ISI (2)

Calculus Level 3

Given that A = 0 π cos x ( x + 2 ) 2 d x \displaystyle A=\int_0^\pi \frac{\cos x}{(x+2)^2} dx , what is the value of 0 π 2 sin x cos x x + 1 d x ? \displaystyle \int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{x+1} dx?

1 2 ( 1 2 + 1 π + 2 1 A ) \frac{1}{2}\left(\frac{1}{2}+\frac{1}{\pi+2}-\frac{1}{A}\right) 1 2 ( 1 4 + 1 π + 2 A 2 ) \frac{1}{2}\left(\frac{1}{4}+\frac{1}{\pi+2}-A^2\right) 1 4 ( 1 2 + 1 2 π + 2 A ) \frac{1}{4}\left(\frac{1}{2}+\frac{1}{2\pi+2}-A\right) 1 4 ( 1 4 + 1 π + 2 A ) \frac{1}{4}\left(\frac{1}{4}+\frac{1}{\pi+2}-A\right) 1 2 ( 1 2 + 1 π + 2 A ) \frac{1}{2}\left(\frac{1}{2}+\frac{1}{\pi+2}-A\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 15, 2018

Relevant wiki: Integration by Parts - Easy

Consider

I = 0 π 2 sin x cos x x + 1 d x = 1 2 0 π 2 sin ( 2 x ) x + 1 d x Let u = 2 x d u = 2 d x = 1 2 0 π sin u u + 2 d u \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sin x \cos x}{x+1} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sin (2x)}{x+1} dx & \small \color{#3D99F6} \text{Let }u = 2x \implies du = 2\ dx \\ & = \frac 12 \int_0^\pi \frac {\sin u}{u+2} du \end{aligned}

Now,

A = 0 π cos x ( x + 2 ) 2 d x By integration by parts = cos x x + 2 0 π 0 π sin x x + 2 d x = 1 π + 2 + 1 2 2 I \begin{aligned} A & = \int_0^\pi \frac {\cos x}{(x+2)^2}dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = - \frac {\cos x}{x+2} \bigg|_0^\pi -\color{#3D99F6} \int_0^\pi \frac {\sin x}{x+2}dx \\ & = \frac 1{\pi +2} + \frac 12 - \color{#3D99F6}2I \end{aligned}

Therefore, I = 1 2 ( 1 2 + 1 π + 2 A ) I = \boxed{\dfrac 12 \left(\dfrac 12 + \dfrac 1{\pi + 2} - A\right)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...