ISI 2016 B.Math Entrance(1)

Calculus Level 3

For α ( 0 , 3 2 ) \alpha \in \left(0,\dfrac{3}{2}\right) , define x n = ( n + 1 ) α n α x_n = (n+1)^{\alpha}-n^{\alpha} .

What are all the possible values of lim n x n \displaystyle{\lim_{n \rightarrow \infty} x_n} ?

Note: If you think that the limit can also diverge to infinity , then choose the option with \infty as well.

0 , 1 , 0,1, \infty 1 , 1, \infty 0 , 1 0,1 0 , 0,\infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 14, 2017

We have

x n = ( n + 1 ) α n α = ( n α + α n α 1 + α ( α 1 ) 2 n α 2 + α ( α 1 ) ( α 2 ) 6 n α 3 + ) n α = α n α 1 + α ( α 1 ) 2 n α 2 + α ( α 1 ) ( α 2 ) 6 n α 3 + Using generalized binomial theorem = α n α 1 ( 1 + ( α 1 ) 2 n + ( α 1 ) ( α 2 ) 6 n 2 + ) B \begin{aligned} x_n = (n+1)^{\alpha} - n^{\alpha} &= \left( n^{\alpha} + \alpha n^{\alpha - 1} + \dfrac{\alpha(\alpha - 1)}{2} n^{\alpha -2} + \dfrac{\alpha(\alpha - 1)(\alpha -2)}{6} n^{\alpha -3} + \cdots \right) - n^{\alpha} \\ &= \alpha n^{\alpha - 1} + \dfrac{\alpha(\alpha - 1)}{2} n^{\alpha -2} + \dfrac{\alpha(\alpha - 1)(\alpha -2)}{6} n^{\alpha -3} + \cdots \qquad \qquad \small \color{#3D99F6}{\text{Using generalized binomial theorem}} \\ &= \alpha n^{\alpha -1} \underbrace{\left( 1 + \dfrac{(\alpha -1)}{2n} + \dfrac{(\alpha - 1)(\alpha -2)}{6n^2} + \cdots \right)}_{\large \mathfrak{B}} \end{aligned}

Note that as n n \to \infty , B 1 \mathfrak{B} \to 1 , so we have

lim n x n = lim n α n α 1 \displaystyle \lim_{n \to \infty} x_n = \lim_{n \to \infty} \alpha n^{\alpha -1}

Hence

lim n α n α 1 = { 0 α ( 0 , 1 ) 1 α = 1 α ( 1 , ) \displaystyle \lim_{n \to \infty} \alpha n^{\alpha -1} = \begin{cases} 0 & \alpha \in \left( 0,1 \right) \\ 1 & \alpha = 1 \\ \infty & \alpha \in \left( 1 , \infty \right) \end{cases}

The case α ( 1 , 3 2 ) \alpha \in \left(1 , \dfrac 32 \right) is just a trivial interval for the last case.

Thus the answer is 0 , 1 , \boxed{0, 1 , \infty} depending on the value of α \alpha .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...