ISI B.Math Entrance(6)

Algebra Level 4

Find the number of discontinuities in the function f ( x ) = ( x + 1 ) sgn ( x 2 1 ) f(x)=(x+1)\text{sgn }(x^2-1) , where f : R R f: \mathbb R \to \mathbb R , where R \mathbb R is the set of all real numbers.

Notation: sgn ( ) \text{sgn }(\cdot) denotes the sign function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 20, 2017

The sign or signum function takes on three values as follows:

sgn ( x ) = { 1 for x < 0 0 for x = 0 1 for x > 0 \text{sgn }(x) = \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}

Therefore,

f ( x ) = ( x + 1 ) sgn ( x 2 1 ) = ( x + 1 ) × { 1 for x < 1 0 for x = 1 1 for 1 < x < 1 0 for x = 1 1 for x > 1 = { x + 1 for x < 1 0 for x = 1 ( x + 1 ) for 1 < x < 1 0 for x = 1 x + 1 for x > 1 \begin{aligned} f(x) & = (x+1)\text{ sgn }(x^2-1) = (x+1) \times \begin{cases} 1 & \text{for } x < - 1 \\ 0 & \text{for } x = -1 \\ -1 & \text{for } -1 < x < 1 \\ 0 & \text{for } x = 1 \\ 1 & \text{for } x > 1 \end{cases} = \begin{cases} x+1 & \text{for } x < - 1 \\ 0 & \text{for } x = -1 \\ -(x+1) & \text{for } -1 < x < 1 \\ 0 & \text{for } x = 1 \\ x+1 & \text{for } x > 1 \end{cases} \end{aligned}

Now, let us check the continuity of f ( x ) f(x) at x = 1 x=-1 and x = 1 x=1 .

{ lim x 1 f ( x ) = lim x 1 ( x + 1 ) = 0 lim x 1 + f ( x ) = lim x 1 + ( x + 1 ) = 0 lim x 1 f ( x ) = lim x 1 + f ( x ) f ( x ) \begin{cases} \displaystyle \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (x+1) = 0 \\ \displaystyle \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} -(x+1) = 0 \end{cases} \implies \displaystyle \lim_{x \to -1^-} f(x) \ {\color{#3D99F6} = } \lim_{x \to -1^+} f(x) \implies f(x) is continous \color{#3D99F6}\text{continous} at x = 1 x=-1 .

{ lim x 1 f ( x ) = lim x 1 ( x + 1 ) = 2 lim x 1 + f ( x ) = lim x 1 + ( x + 1 ) = 2 lim x 1 f ( x ) lim x 1 + f ( x ) f ( x ) \begin{cases} \displaystyle \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -(x+1) = -2 \\ \displaystyle \lim_{x \to 1^+} f(x) = \lim_{x \to -1^+} (x+1) = 2 \end{cases} \implies \displaystyle \lim_{x \to 1^-} f(x) \ {\color{#D61F06} \ne } \lim_{x \to 1^+} f(x) \implies f(x) is discontinous \color{#D61F06}\text{discontinous} at x = 1 x=1 .

Therefore, there is only 1 \boxed{1} discontinuity in f ( x ) f(x) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...