ISI Entrance test

Calculus Level 5

Suppose f : R R f: \mathbb {R \to R} is a function given by: f ( x ) = { 1 x = 1 e x 10 1 + ( x 1 ) 2 sin ( 1 x 1 ) , x 1 f(x)=\begin{cases} 1 & { x=1} \\ e^{x^{10}-1}+(x-1)^{2}\sin \left(\dfrac{1}{x-1}\right), & {x \ne 1 } \end{cases} Evaluate 1 10 ( lim n [ 100 n n k = 1 100 f ( 1 + k n ) ] ) \frac{1}{10}(\displaystyle \lim_{n \to \infty}\left[100n-n \sum_{k=1}^{100}f \left(1+\frac{k}{n}\right) \right])

0 It does not exist. 100 1 -5050

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Sky
May 22, 2017

Say, L = lim n [ 100 n n k = 1 100 f ( 1 + k n ) ] L\,=\,\displaystyle \lim_{n \to \infty}\left[100n-n \sum_{k=1}^{100}f \left(1+\frac{k}{n}\right) \right]

Notice that, L = lim n [ 100 n n k = 1 100 f ( 1 + k n ) ] = lim n n [ 100 k = 1 100 f ( 1 + k n ) ] = lim n [ 100 k = 1 100 f ( 1 + k n ) 1 n ] L\,=\,\displaystyle \lim_{n \to \infty}\left[100n-n \sum_{k=1}^{100}f \left(1+\frac{k}{n}\right) \right]\,=\,\lim_{n \to \infty} n\cdot\left[100-\sum_{k=1}^{100}f \left(1+\frac{k}{n}\right) \right]\,=\, \lim_{n \to \infty} \left[\dfrac{100- \sum_{k=1}^{100}f \left(1+\frac{k}{n}\right)}{\dfrac{1}{n}} \right] . Since, f ( 1 ) = 1 f(1)=1 ,therefore, 100 = k = 1 100 1 = k = 1 100 f ( 1 ) 100\,=\,\sum_{k=1}^{100} 1\,=\,\sum_{k=1}^{100}f(1) .

So, L = lim n [ k = 1 100 f ( 1 ) k = 1 100 f ( 1 + k n ) 1 n ] = lim n k = 1 100 [ f ( 1 ) f ( 1 + k n ) 1 n ] = lim n k = 1 100 k [ f ( 1 ) f ( 1 + k n ) k n ] L\,=\, \displaystyle \lim_{n \to \infty} \left[\dfrac{\sum_{k=1}^{100}f(1)- \sum_{k=1}^{100}f \left(1+\frac{k}{n}\right)}{\dfrac{1}{n}} \right] \,=\, \lim_{n \to \infty} \sum_{k=1}^{100} \left[\dfrac{f(1) \, - \,f \left(1+\frac{k}{n}\right)}{\dfrac{1}{n}} \right] \,=\, \lim_{n \to \infty} \sum_{k=1}^{100}\,k\,\cdot \left[\dfrac{f(1) \, - \,f \left(1+\frac{k}{n}\right)}{\dfrac{k}{n}} \right]

= lim n k = 1 100 k [ f ( 1 + k n ) f ( 1 ) k n ] =\, \displaystyle - \lim_{n \to \infty} \sum_{k=1}^{100}\,k\,\cdot \left[\dfrac{ f \left(1+\frac{k}{n}\right) \, - \, f(1)}{\dfrac{k}{n}} \right] .

Since, the summation variable k k has nothing to do with n n , therefore, it is legitimate to take limit inside summation. Doing so would yield : L = k = 1 100 k lim n [ f ( 1 + k n ) f ( 1 ) k n ] L\,=\, - \displaystyle \sum_{k=1}^{100} \,k\,\cdot \lim_{n \to \infty} \left[\dfrac{ f \left(1+\frac{k}{n}\right) \, - \, f(1)}{\dfrac{k}{n}} \right] .

Now, notice that k { 1 , 2 , 3 , . . , 100 } k \, \in \, \{1,2,3,..,100\} , i.e k k is finite. Thus, as n \displaystyle n \to \infty , k n 0 \displaystyle \dfrac{k}{n} \to 0 . Hence,

L = k = 1 100 k lim t 0 [ f ( 1 + t ) f ( 1 ) t ] L\,=\, - \displaystyle \sum_{k=1}^{100} \,k\,\cdot \lim_{t \to 0} \left[\dfrac{ f(1+t) \, - \, f(1)}{t} \right] , where k n = t \dfrac{k}{n}\,=\,t .

Notice that, lim t 0 [ f ( 1 + t ) f ( 1 ) t ] \displaystyle \lim_{t \to 0} \left[\dfrac{ f(1+t) \, - \, f(1)}{t} \right] appears to be f ( 1 ) f^{\prime} (1) . It can be ascertained that f ( 1 ) f^{\prime} (1) does exist and is equal to 10 10 .

So, L = k = 1 100 k lim t 0 [ f ( 1 + t ) f ( 1 ) t ] = k = 1 100 k f ( 1 ) = k = 1 100 k 10 L\,=\, - \displaystyle \sum_{k=1}^{100} \,k\,\cdot \lim_{t \to 0} \left[\dfrac{ f(1+t) \, - \, f(1)}{t} \right]\,=\, - \displaystyle \sum_{k=1}^{100} \,k\,\cdot f^{\prime }(1)\,=\, - \sum_{k=1}^{100} \,k\,\cdot 10 .

Therefore, L = 10 ( 100 ) ( 100 + 1 ) 2 = 50500 L\,=\, -10 \cdot \frac{(100)(100+1)}{2}\,=\,-50500 .

Hence, L 10 = 5050 \frac{L}{10}\,=\,-5050 .

nyc one! keep it up cheers!

nibedan mukherjee - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...