ISI Interview Question 2013

Algebra Level 4

If a + b + c = 7 a+b+c=7 and a , b , c , R + a,b,c, \in \mathbb R^{+} then the minimum value of c y c a , b , c a 2 + b 2 a + b = ? \sum_{cyc}^{a,b,c} \dfrac{a^2+b^2}{a+b}=?


The answer is 7.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Skye Rzym
Jun 22, 2017

Given that a + b + c = 7 a+b+c=7 and a , b , c R + a,b,c \in \mathbb R^{+} . c y c a , b , c a 2 + b 2 a + b = c y c a , b , c ( a + b ) 2 2 a b a + b \sum_{cyc}^{a,b,c} \frac{a^{2}+b^{2}}{a+b}=\sum_{cyc}^{a,b,c} \frac{(a+b)^{2}-2ab}{a+b} = c y c a , b , c a + b 2 a b a + b = c y c a , b , c a + b 2 1 a + 1 b =\sum_{cyc}^{a,b,c} a+b-\frac{2ab}{a+b}=\sum_{cyc}^{a,b,c} a+b-\frac{2}{\frac{1}{a}+\frac{1}{b}} c y c a , b , c a + b a + b 2 = c y c a , b , c a + b 2 = a + b + c = 7 \geq\sum_{cyc}^{a,b,c} a+b-\frac{a+b}{2}=\sum_{cyc}^{a,b,c} \frac{a+b}{2}=a+b+c=7 or c y c a , b , c a 2 + b 2 a + b = c y c a , b , c a 2 a + b + b 2 a + b \sum_{cyc}^{a,b,c} \frac{a^{2}+b^{2}}{a+b}=\sum_{cyc}^{a,b,c} \frac{a^{2}}{a+b}+\frac{b^{2}}{a+b} c y c a , b , c ( a + b ) 2 2 ( a + b ) = c y c a , b , c a + b 2 = a + b + c = 7 \geq \sum_{cyc}^{a,b,c} \frac{(a+b)^{2}}{2(a+b)}=\sum_{cyc}^{a,b,c} \frac{a+b}{2}=a+b+c=7

Better ways are there. I mean, titu's lemma can be used for solving this easily

Md Zuhair - 3 years, 11 months ago

Log in to reply

One can just use trivial inequalities ( a b ) 2 > = 0 (a-b)^2>=0 .So ( a + b ) 2 > = ( 1 / 2 ) ( a + b ) 2 (a+b)^2>=(1/2)(a+b)^2 .Now I guess its clear what's to be done next..That the minimum value is ( a + b + c ) (a+b+c)

Spandan Senapati - 3 years, 11 months ago

from where u got to know the interview questions @Md Zuhair

rajdeep brahma - 3 years ago

Log in to reply

Senior told me.

Md Zuhair - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...