ISI Interview Question

Algebra Level 4

M = c y c x , y , z x a y + b z M=\large{\sum^{x, \ y, \ z}_{cyc} \dfrac{x}{ay+bz}}

Find the minimum value of M M , if a + b = 7 a+b=7 and a , b , x , y , z R + a,b,x,y,z \in \mathbb{R}^{+}


The answer is 0.428.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given expression is :

M = x a y + b z + y a z + b x + z a x + b y = x 2 a x y + b x z + y 2 a y z + b x y + z 2 a z x + b y z M = \dfrac{x}{ay+bz} + \dfrac{y}{az+bx} + \dfrac{z}{ax+by} = \dfrac{x^{2}}{axy+bxz} + \dfrac{y^{2}}{ayz+bxy} + \dfrac{z^{2}}{azx+byz}

Using Titu's Lemma :

M [ x + y + z ] 2 ( a + b ) ( y x + z y + x z ) M \ge \dfrac{[x+y+z]^{2}}{(a+b)(yx+zy+xz)}

M x 2 + y 2 + z 2 7 ( x y + y z + z x ) + 2 7 M \ge \dfrac{x^{2} + y^{2} +z^{2}}{7(xy+yz+zx)} + \dfrac{2}{7}

Now, using the result x 2 + y 2 + z 2 x y + y z + z x x^{2} + y^{2} + z^{2} \ge xy + yz + zx which follows by rearrangement inequality we get :

M 3 7 M \ge \dfrac{3}{7}

I know, When i learnt Titu's Lemma first, I was obsessed with it :P

Everyone likes to do questions with it :)

Md Zuhair - 3 years, 8 months ago

Log in to reply

pls give the source of these interview questions of isi @Md Zuhair .

rajdeep brahma - 3 years ago

Log in to reply

Ok. Why is your WhatsApp off? Kemon rank Holo JEE ADV E? Ar this source is from a senior

Md Zuhair - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...