ISI Power

Let g : N N g: \mathbb {N \to N} , g ( n ) g(n) equals the product of the digits of n n (in decimal notation).

Find the sum of all n n such that n 2 12 n + 36 = g ( n ) n^{2}-12n+36=g(n) .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
May 22, 2017

n 2 12 n + 36 = g ( n ) g ( n ) = ( n 6 ) 2 n^2-12n+36=g(n) \\ g(n)=(n-6)^2

We know product of digits of a number can not exceed the number itself

So, n g ( n ) n 6 g ( n ) 6 ( n 6 ) 2 ( g ( n ) 6 ) 2 g ( n ) ( g ( n ) ) 2 12 g ( n ) + 36 ( g ( n ) ) 2 13 g ( n ) + 36 0 ( g ( n ) 4 ) ( g ( n ) 9 ) 0 n \geq g(n) \\ n-6 \geq g(n)-6 \\ (n-6)^2 \geq (g(n)-6)^2 \\ g(n) \geq (g(n))^2-12g(n)+36 \\ (g(n))^2-13g(n)+36 \leq 0 \\ (g(n)-4)(g(n)-9) \leq 0

It implies 4 g ( n ) 9 4 \leq g(n) \leq 9

It can be easily checked and the only two solutions will be 4 , 9 4,9

You said we know g ( n ) g(n) is always less than n n . But you should prove it.

Shivam Jadhav - 4 years ago

Log in to reply

Okk I will try to prove

Kushal Bose - 4 years ago

@Kazem Sepehrinia can you prove it.

Shivam Jadhav - 4 years ago

Same way upvotes !!!

rajdeep brahma - 3 years, 2 months ago
Kazem Sepehrinia
May 24, 2017

Let n = a k a k 1 . . . a 1 n=\overline{a_k a_{k-1} ... a_{1}} be a k k -digit number, thus n = 1 0 k 1 a k + 1 0 k 2 a k 1 + . . . + 10 a 2 + a 1 n=10^{k-1}a_k+10^{k-2}a_{k-1}+...+10a_2+a_1 Observe that g ( n ) = a 1 a 2 . . a k 1 a k 9 k 1 a k 1 0 k 1 a k 1 0 k 1 a k + 1 0 k 2 a k 1 + . . . + 10 a 2 + a 1 = n g(n)=a_1 a_2 .. a_{k-1} a_k \le 9^{k-1} a_k \le 10^{k-1} a_k \le 10^{k-1}a_k+10^{k-2}a_{k-1}+...+10a_2+a_1=n Therefore g ( n ) n g(n) \le n . Now for this problem we have n 2 12 n + 36 = g ( n ) n n 2 13 n + 36 0 ( n 4 ) ( n 9 ) 0 n^2-12n+36=g(n)\le n \Longrightarrow n^2-13n+36 \le 0 \Longrightarrow (n-4)(n-9) \le 0 Hence 4 n 9 4 \le n \le 9 . Equality occurs when n = 4 , 9 n=4, 9 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...