Isn't 100000 such a huge number?

Find the sum of all the values of x x which satisfy the equation

x + 100000 = a + b \sqrt{x+\sqrt{100000}}=\sqrt{a}+\sqrt{b} where x , a , x, a, and b b are positive integers.


For a related problem, see Isn't 100000 such a huge number (part 2)?


The answer is 58590.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Christopher Boo
Nov 15, 2014

x + 100000 = ( a + b ) 2 \sqrt{x+\sqrt {100000}}=\sqrt{(\sqrt a+\sqrt b)^2}

x + 2 25000 = ( a + b ) + 2 a b \sqrt{x+2\sqrt{25000}}=\sqrt{(a+b)+2\sqrt{ab}}

Now, we have

x = a + b x=a+b

25000 = a b 25000=ab

We don't have to find each value of x x . What we have to do is add up all possible value of a a (or b b since they are symmetry). Since a a is a divisor of 25000 = 2 3 × 5 5 25000=2^3\times 5^5 , the sum of divisor is given by

S ( d ) = ( 2 0 + 2 1 + 2 2 + 2 3 ) ( 5 0 + 5 1 + 5 2 + 5 3 + 5 4 + 5 5 ) S(d)=(2^0+2^1+2^2+2^3)(5^0+5^1+5^2+5^3+5^4+5^5)

The sum of x x is 58590 58590 .

Is this solution clear enough for you?

Christopher Boo - 6 years, 7 months ago

Log in to reply

i like ur way!! nice!!

A Former Brilliant Member - 6 years, 7 months ago

Liked your way! Better than mine!

Kartik Sharma - 6 years, 7 months ago

Great solution!! But can you please tell me how did the sum of divisors formula came from?

Sarthak Tanwani - 6 years, 6 months ago

I solved it by ( 1 2 + 2 2 + 5 2 + 1 0 2 + 2 5 2 + 5 0 2 ) × 18 (1^{2}+2^{2}+5^{2}+10^{2}+25^{2}+50^{2} ) \times 18 but your solution still smarter than mine..everytime:)

Mahdi Al-kawaz - 6 years, 7 months ago

did it the same way, i rememberd a math which asked all the factors of 25000

Aareyan Manzoor - 6 years, 6 months ago

I wrote 50 10 = 500 50\sqrt{10}=\sqrt{500} . Rotfl!! Lol!

Pranjal Jain - 6 years, 6 months ago
Chew-Seong Cheong
Nov 14, 2014

For x + 100000 = a + b \sqrt{x+\sqrt{100000}} = \sqrt{a} + \sqrt{b} , it implies that:

x + 100000 = ( a + b ) 2 = a + b \sqrt{x+\sqrt{100000}} = \sqrt{(\sqrt{a} + \sqrt{b})^2} = \sqrt{a} + \sqrt{b}

x + 100000 = ( a + b ) 2 = a + 2 a b + b \Rightarrow x + \sqrt{100000} = (\sqrt{a} + \sqrt{b})^2 = a + 2\sqrt{ab} + b

x = a + b , 2 a b = 100000 a b = 25000 \Rightarrow x = a+b, \quad 2\sqrt{ab} = \sqrt{100000}\quad \Rightarrow ab = 25000

There are 12 12 unordered pairs of ( a , b ) (a,b) that satisfy the equation a b = 25000 ab = 25000 and the all the values of x = a + b x = a+b are as follows:

1 × 25000 = 25000 1 + 25000 = 25001 2 × 12500 = 25000 2 + 12500 = 12502 4 × 6250 = 25000 4 + 6250 = 6254 5 × 5000 = 25000 5 + 5000 = 5005 8 × 3125 = 25000 8 + 3125 = 3133 10 × 2500 = 25000 10 + 2500 = 2510 20 × 1250 = 25000 20 + 1250 = 1270 25 × 1000 = 25000 25 + 1000 = 1025 40 × 625 = 25000 40 + 625 = 665 50 × 500 = 25000 50 + 500 = 550 100 × 250 = 25000 100 + 250 = 350 125 × 200 = 25000 125 + 200 = 325 \begin{matrix} 1×25000=25000 & 1+25000=25001 \\ 2×12500=25000 & 2+12500=12502 \\ 4×6250=25000 & 4+6250=6254 \\ 5×5000=25000 & 5+5000=5005 \\ 8×3125=25000 & 8+3125=3133 \\ 10×2500=25000 & 10+2500=2510 \\ 20×1250=25000 & 20+1250=1270 \\ 25×1000=25000 & 25+1000=1025 \\ 40×625=25000 & 40+625=665 \\ 50×500=25000 & 50+500=550 \\ 100×250=25000 & 100+250=350 \\ 125×200=25000 & 125+200=325 \end{matrix}

And the sum of all the values of x x is:

= 25001 + 12502 + 6254 + 5005 + 3133 + 2510 + = 25001 + 12502 + 6254 + 5005 + 3133 + 2510 + 1270 + 1025 + 665 + 550 + 350 + 325 = 59580 1270 + 1025 + 665 + 550 + 350 + 325 = \boxed{59580}

Great method, I did it the same way.

Mohamed Shuaib Hasan - 6 years, 7 months ago

i did it the same way too

ahmed abdo - 6 years, 6 months ago
Kartik Sharma
Nov 14, 2014

First of all, this is a great question and what makes it great is that we have to find the sum of all the values and not the number of values.

One thing which is required to tackle this is -

m + n = m + m 2 n 2 + m m 2 n 2 \sqrt{m + \sqrt{n}} =\sqrt { \frac { \sqrt { m\quad +\quad \sqrt { { m }^{ 2 }-n } } }{ 2 } } + \sqrt { \frac { \sqrt { m\quad -\quad \sqrt { { m }^{ 2 }-n } } }{ 2 } } [ I would like to have a good proof for this too ]

x + 100000 = x ± x 2 100000 2 \sqrt{x + \sqrt{100000}} = \sqrt{\frac{x \pm \sqrt{{x}^{2} - 100000}}{2}}

So, for a a and b b to be positive integers,

x 2 100000 = y \sqrt { { x }^{ 2 }\quad -\quad 100000 } =\quad y for y being any positive integer

x 2 y 2 = 100000 {x}^{2} - {y}^{2} = 100000

( x y ) ( x + y ) = 100000 (x-y)(x+y) = 100000

So, 100000 100000 can be 'split' into 2 parts p , q p, q such that

x y = p x-y = p , x + y = q x+y = q

Adding these 2 eqns, 2 x = p + q 2x = p+q . So, 100000 when split into 2 parts such that both of them are even, we will get a positive x x and x x will be p + q 2 \frac{p+q}{2}

Possible values of p p and q q can easily be fund now.

( p , q ) = ( 100 , 1000 ) , ( 10 , 10000 ) , ( 50 , 2000 ) , ( 500 , 200 ) , ( 5000 , 20 ) , ( 50000 , 2 ) , ( 250 , 400 ) , ( 2500 , 40 ) , ( 25000 , 4 ) , ( 1250 , 80 ) , ( 12500 , 8 ) , ( 6250 , 16 ) (p,q) = (100, 1000), (10, 10000), (50, 2000), (500, 200), (5000, 20), (50000, 2), (250, 400), (2500, 40), (25000, 4), (1250, 80), (12500, 8), (6250, 16)

After some calculations,

x = 550 , 5005 , 1025 , 350 , 2510 , 25001 , 325 , 1270 , 12502 , 665 , 6254 , 3133 x = 550, 5005, 1025, 350, 2510, 25001, 325, 1270, 12502, 665, 6254, 3133

After adding and finally adding our calculations, the answer we get is 58590 \boxed{58590}

Well done Kartik! Keep it up and Happy Children's Day!!!

Yash Singhal - 6 years, 7 months ago

Log in to reply

Thanks! Well, nice problem! Do you have a proof for it?

Kartik Sharma - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...