If the p th , q th and r th term of an arithmetic progression is a , b and c , respectively, then find the value of a ( q − r ) + b ( r − p ) + c ( p − q ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Amazingly done!
let the arithmetic progression be 2 , 4 , 6 , 8 , 1 0 , 1 2 . We let p t h = a = 2 , q t h = b = 4 and r t h = c = 6 .
Now,
a ( q − r ) + b ( r − p ) + c ( p − q ) = 2 ( 4 − 6 ) + 4 ( 6 − 2 ) + 6 ( 2 − 4 ) = − 4 + 1 6 − 1 2 = 0
Problem Loading...
Note Loading...
Set Loading...
Let the n th term of the arithmetic progression be t n = A + ( n − 1 ) d for some reals A , d .
If d = 0 then a = b = c , in which case the given expression equals a ( q − r + r − p + p − q ) = 0 .
So now suppose d = 0 .
Then t q − t r = ( A + ( q − 1 ) d ) − ( A + ( r − 1 ) d ) ⟹ b − c = ( q − r ) d ⟹ q − r = d b − c .
Similarly c − a = ( r − p ) d ⟹ r − p = d c − a and a − b = ( p − q ) d ⟹ p − q = d a − b .
Then for d = 0 we have that a ( q − r ) + b ( r − p ) + c ( p − q ) =
a × d ( b − c ) + b × d ( c − a ) + c × d ( a − b ) =
d 1 × ( a ( b − c ) + b ( c − a ) + c ( a − b ) ) = d 1 ( a b − a c + b c − a b + c a − c b ) = 0 .
So for any reals A , d the given expression is equal to 0 .