Isn't Familiar! Part III

Algebra Level 5

{ 4 x 3 3 x y = 9 x + ( x + 3 ) 3 3 x 2 2 y + 1 = 7 x 2 x + 1 \left\{\begin{matrix} 4x^3-3xy=9x+\sqrt{(x+3)^3} & & \\ 3x^2-2y+1=7x-2\sqrt{x+1} & & \end{matrix}\right.

How many pairs of ( x , y ) (x,y) satisfy the system of equations above?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 19, 2018

{ 4 x 3 3 x y = 9 x + ( x + 3 ) 3 . . . ( 1 ) 3 x 3 2 y + 1 = 7 x 2 x + 1 . . . ( 2 ) \begin{cases} 4x^3 - 3xy = 9x + \sqrt{(x+3)^3} & ...(1) \\ 3x^3 - 2y + 1 = 7x - 2\sqrt{x+1} & ...(2) \end{cases}

3 x ( 2 ) 2 ( 1 ) : x 3 + 3 x = 21 x 2 6 x x + 1 18 x 2 ( x + 3 ) 3 \begin{aligned} 3x(2)-2(1): \quad x^3 + 3x & = 21x^2 - 6x\sqrt{x+1} - 18 x - 2\sqrt{(x+3)^3} \end{aligned}

x 3 21 x 2 + 21 x + 6 x x + 1 + 2 ( x + 3 ) 3 = 0 \begin{aligned} \implies x^3-21x^2+21x + 6x\sqrt{x+1} + 2\sqrt{(x+3)^3} & = 0 \end{aligned}

The equation above has three roots, therefore there are 3 \boxed 3 pairs of ( x , y ) (x,y) satisfying the system of equations.

Solving the equation above, the three solution pairs are ( 0.27995 , 2.44595 ) , ( 2.26951 , 2.09091 ) , ( 17.7537 , 415.483 ) (-0.27995, 2.44595), (2.26951, 2.09091), (17.7537, 415.483) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...