If z 1 = 1 0 + 6 i and z 2 = 4 + 6 i are two complex numbers such that
ar g ( z − z 2 z − z 1 ) = 4 π
Then ∣ z − 7 − 9 i ∣ = a b , where a and b are positive integers with b being square free. Input 2 ( a + b ) .
Notations:
Did you liked it? You can try more in my sets! Check it out!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Log in to reply
Yes. The centre forms a right-angled isosceles triangle with z 1 and z 2 . Which makes it easy to find.
Sir, Its 3 2
ar g ( z − z 2 z − z 1 ) = 4 π
ar g ( z − z 1 ) − ar g ( z − z 2 ) = 4 π
Let z = x + y i :
tan − 1 ( x − 1 0 y − 6 ) − tan − 1 ( x − 4 y − 6 ) = 4 π
tan [ tan − 1 ( x − 1 0 y − 6 ) − tan − 1 ( x − 4 y − 6 ) ] = tan ( 4 π )
1 + ( x − 4 ) ( x − 1 0 ) ( y − 6 ) 2 x − 1 0 y − 6 − x − 4 y − 6 = 1
( x − 1 0 ) ( x − 4 ) ( y − 6 ) ( x − 4 ) − ( y − 6 ) ( x − 1 0 ) = ( x − 1 0 ) ( x − 4 ) ( x − 1 0 ) ( x − 4 ) + ( y − 6 ) 2
− y 2 + 1 8 y − 7 2 = x 2 − 1 4 x + 4 0
∣ z − 7 − 9 i ∣ = ( x − 7 ) 2 + ( y − 9 ) 2
∣ z − 7 − 9 i ∣ = x 2 − 1 4 x + 4 9 + y 2 − 1 8 y + 8 1
∣ z − 7 − 9 i ∣ = x 2 − 1 4 x + 4 0 + 9 + y 2 − 1 8 y + 8 1
∣ z − 7 − 9 i ∣ = − y 2 + 1 8 y − 7 2 + 9 + y 2 − 1 8 y + 8 1
∣ z − 7 − 9 i ∣ = 1 8
∣ z − 7 − 9 i ∣ = 3 2
a = 3 , b = 2 , 2 ( a + b ) = 1 0
Oh Gosh! Sir, You worked out a lot. Well... it can be done easily
Log in to reply
It can... But I generally like to post brute force solutions as well, because not everyone has the necessary insights to work it out easier... :)
Problem Loading...
Note Loading...
Set Loading...
Since the angle at z sub tended by z 1 and z 2 is 4 1 π , z must lie on the portion of the circle centre 7 + 9 i and radius 3 2 that lies above the line I m z = 6 . The centre of this circle subtends an angle 2 1 π at z 1 and z 2 . The desired distance is 3 2 , so the answer is 2 ( 2 + 3 ) = 1 0 .