Simplify nested radical

Algebra Level 2

If 9 2 14 = a b \sqrt{9 -2\sqrt{14}} = \sqrt a - \sqrt b , where a a and b b are integers, find a b a-b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aaron Tsai
Apr 25, 2016

9 2 14 = 7 2 14 + 2 \sqrt{9-2\sqrt{14}}=\sqrt{7-2\sqrt{14}+2}

= ( 7 ) 2 2 7 2 + ( 2 ) 2 = ( 7 2 ) 2 = 7 2 =\sqrt{(\sqrt{7})^{2}-2\sqrt{7}\sqrt{2}+(\sqrt{2})^{2}}=\sqrt{(\sqrt{7}-\sqrt{2})^{2}}=\sqrt{7}-\sqrt{2}

a = 7 a=7 and b = 2 b=2 , so a b = 5 a-b=\boxed{5}

Hung Woei Neoh
May 10, 2016

For those who cannot see the perfect square:

9 2 14 = a b 9 2 14 = a + b 2 a b \sqrt{9-2\sqrt{14}} = \sqrt{a} - \sqrt{b}\\ 9-2\sqrt{14} = a+b - 2\sqrt{ab}

By comparison:

a + b = 9 2 14 = 2 a b a+b=9 \quad\quad -2\sqrt{14} =-2\sqrt{ab}

Use the second equation:

2 14 = 2 a b a b = 14 b = 14 a -2\sqrt{14} = -2\sqrt{ab}\\ ab = 14\\ b=\dfrac{14}{a}

Substitute into the first equation:

a + 14 a = 9 a 2 9 a + 14 = 0 ( a 7 ) ( a 2 ) = 0 a = 7 , 2 a+\dfrac{14}{a} = 9\\ a^2 - 9a + 14 = 0\\ (a-7)(a-2) = 0\\ a=7,\;2

When a = 7 , b = 14 7 = 2 a=7,\;b= \dfrac{14}{7} = 2

When a = 2 , b = 14 2 = 7 a=2,\;b=\dfrac{14}{2} = 7

Now, notice that 9 2 14 > 0 \sqrt{9-2\sqrt{14}} > 0 , therefore a > b a > b \sqrt{a} > \sqrt{b} \implies a>b

Therefore, a = 7 , b = 2 a=7,\;b=2 and a b = 7 2 = 5 a-b = 7-2 = \boxed{5}

Rishabh Jain
Apr 25, 2016

9 2 14 = ( 7 ) 2 + ( 2 ) 2 2 7 2 \Large{\sqrt{9-2\sqrt{14}}\\=\sqrt{(\sqrt 7)^2+(\sqrt{2})^2-2\sqrt 7\cdot\sqrt 2}} = 7 2 \Large =\sqrt 7-\sqrt 2 Hence, 7 2 = 5 \Large 7-2=\boxed 5 .

Otherwise we can square both side and combare to get a + b = 9 \large a+b=9 and a b = 14 \large ab=14 which on solving gives a = 7 , b = 2 \large a=7,b=2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...