isn't this easy !!

Calculus Level 4

0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x = ? \large \int _0^1 4x^3 \left( \frac {d^2}{dx^2} \left(1-x^2\right)^5 \right) dx = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Relevant wiki: Beta Function

I = 0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x Let x = sin θ d x = cos θ d θ = 0 1 4 sin 3 θ d 2 d x 2 cos 10 θ d x = 4 0 π 2 sin 3 θ d d x ( 10 cos 8 θ sin θ ) cos θ d θ = 40 0 π 2 sin 3 θ cos θ ( 8 cos 6 θ sin 2 θ cos 8 θ ) d θ = 40 0 π 2 ( 8 sin 5 cos 7 θ sin 3 θ cos 9 θ ) d θ = 20 ( 8 B ( 3 , 4 ) B ( 2 , 5 ) ) where B ( m , n ) is the beta function. = 20 ( 8 Γ ( 3 ) Γ ( 4 ) Γ ( 7 ) Γ ( 2 ) Γ ( 5 ) Γ ( 7 ) ) where Γ ( z ) is the gamma function. = 20 ( 8 ( 2 ! ) ( 3 ! ) ( 1 ! ) ( 4 ! ) 6 ! ) = 20 ( 96 24 720 ) = 2 \begin{aligned} I & = \int_0^1 4x^3\left(\frac {d^2}{dx^2} \left(1-x^2\right)^5\right) dx & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \ d \theta \\ & = \int_0^1 4\sin^3 \theta \cdot \frac {d^2}{dx^2} \cos^{10} \theta \cdot dx \\ & = 4 \int_0^\frac \pi 2 \sin^3 \theta \cdot \frac d{dx} \left(- 10 \cos^8 \theta \sin \theta \right) \cdot \cos \theta \ d \theta \\ & = 40 \int_0^\frac \pi 2 \sin^3 \theta \cos \theta \left(8 \cos^6 \theta \sin^2 \theta - \cos^8 \theta \right) \ d \theta \\ & = 40 \int_0^\frac \pi 2 \left(8 \sin^5 \cos^7 \theta - \sin^3 \theta \cos^9 \theta \right) \ d \theta \\ & = 20 \left(8 B(3,4) - B(2,5) \right) & \small \color{#3D99F6} \text{where } B(m,n) \text{ is the beta function.} \\ & = 20 \left(\frac {8\Gamma (3) \Gamma (4)}{\Gamma (7)} - \frac {\Gamma (2) \Gamma (5)}{\Gamma (7)} \right) & \small \color{#3D99F6} \text{where } \Gamma (z) \text{ is the gamma function.} \\ & = 20 \left(\frac {8 (2!)(3!) - (1!)(4!)}{6!} \right) \\ & = 20 \left(\frac {96 - 24}{720} \right) \\ & = \boxed{2} \end{aligned}

Aaron Zhang
Jan 26, 2019

Let

f(x)=(1-x^2)^5,\\ \begin{aligned} \int_0^1 {4x^3f''(x)dx}&=4x^3f'(x)|_0^1-\int_0^1{12x^2f'(x)dx}\\ &=-\int_0^1{12x^2f'(x)dx}\\ &=\int_0^1{24xf(x)dx}-12x^2f(x)|_0^1\\ &=12\int_0^1{(1-x^2)^5}d(x^2)\\ &=12\int_0^1{u^5}du\\ &=12\times \frac{1}{6}\\ &=2

Harish Yadav
Sep 14, 2017

Differentiating one time and using by parts

The answer is quite straightforward.

d 2 d x 2 ( 1 x 2 ) 5 = d d x 5 ( 1 x 2 ) 4 ( 2 x ) = 10 ( x 2 1 ) 4 80 x 2 ( x 2 1 ) 3 \frac{d^2}{dx^2} (1-x^2)^5 =\frac{d}{dx} 5(1-x^2)^4(-2x)=- 10(x^2 - 1)^4 - 80x^2(x^2 - 1)^3

This implies the relevant integral is

0 1 ( 40 x 3 ( x 2 1 ) 4 320 x 5 ( x 2 1 ) 3 ) d x \int_0^1 (-40x^3(x^2-1)^4-320x^5(x^2-1)^3) dx

Let y = x 2 y=x^2 , then d y = 2 x d x dy=2x dx , this converts the integral to

0 1 ( 20 y ( y 1 ) 4 160 y 2 ( y 1 ) 3 ) d y = 0 1 ( 180 y 5 + 560 y 4 600 y 3 + 240 y 2 20 y ) d y \int_0^1 (-20y(y-1)^4-160y^2(y-1)^3) dy = \int_0^1 (- 180y^5 + 560y^4 - 600y^3 + 240y^2 - 20y) dy = ( 30 y 6 + 112 y 5 150 y 4 + 80 y 3 10 y 2 ) 0 1 = 30 + 112 = 150 + 80 10 = 2 = \left.(- 30y^6 + 112y^5 - 150y^4 + 80y^3 - 10y^2)\right|_0^1=-30+112=150+80-10=\boxed{2}

Akshay Bhatia
Nov 12, 2014

iit jee advanced 2014

i think its not the solution !!

Rishabh Jain - 6 years, 7 months ago

ya i had solved it earlier

Nivedit Jain - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...