∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
f(x)=(1-x^2)^5,\\ \begin{aligned} \int_0^1 {4x^3f''(x)dx}&=4x^3f'(x)|_0^1-\int_0^1{12x^2f'(x)dx}\\ &=-\int_0^1{12x^2f'(x)dx}\\ &=\int_0^1{24xf(x)dx}-12x^2f(x)|_0^1\\ &=12\int_0^1{(1-x^2)^5}d(x^2)\\ &=12\int_0^1{u^5}du\\ &=12\times \frac{1}{6}\\ &=2
Differentiating one time and using by parts
The answer is quite straightforward.
d x 2 d 2 ( 1 − x 2 ) 5 = d x d 5 ( 1 − x 2 ) 4 ( − 2 x ) = − 1 0 ( x 2 − 1 ) 4 − 8 0 x 2 ( x 2 − 1 ) 3
This implies the relevant integral is
∫ 0 1 ( − 4 0 x 3 ( x 2 − 1 ) 4 − 3 2 0 x 5 ( x 2 − 1 ) 3 ) d x
Let y = x 2 , then d y = 2 x d x , this converts the integral to
∫ 0 1 ( − 2 0 y ( y − 1 ) 4 − 1 6 0 y 2 ( y − 1 ) 3 ) d y = ∫ 0 1 ( − 1 8 0 y 5 + 5 6 0 y 4 − 6 0 0 y 3 + 2 4 0 y 2 − 2 0 y ) d y = ( − 3 0 y 6 + 1 1 2 y 5 − 1 5 0 y 4 + 8 0 y 3 − 1 0 y 2 ) ∣ ∣ 0 1 = − 3 0 + 1 1 2 = 1 5 0 + 8 0 − 1 0 = 2
i think its not the solution !!
ya i had solved it earlier
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Beta Function
I = ∫ 0 1 4 x 3 ( d x 2 d 2 ( 1 − x 2 ) 5 ) d x = ∫ 0 1 4 sin 3 θ ⋅ d x 2 d 2 cos 1 0 θ ⋅ d x = 4 ∫ 0 2 π sin 3 θ ⋅ d x d ( − 1 0 cos 8 θ sin θ ) ⋅ cos θ d θ = 4 0 ∫ 0 2 π sin 3 θ cos θ ( 8 cos 6 θ sin 2 θ − cos 8 θ ) d θ = 4 0 ∫ 0 2 π ( 8 sin 5 cos 7 θ − sin 3 θ cos 9 θ ) d θ = 2 0 ( 8 B ( 3 , 4 ) − B ( 2 , 5 ) ) = 2 0 ( Γ ( 7 ) 8 Γ ( 3 ) Γ ( 4 ) − Γ ( 7 ) Γ ( 2 ) Γ ( 5 ) ) = 2 0 ( 6 ! 8 ( 2 ! ) ( 3 ! ) − ( 1 ! ) ( 4 ! ) ) = 2 0 ( 7 2 0 9 6 − 2 4 ) = 2 Let x = sin θ ⟹ d x = cos θ d θ where B ( m , n ) is the beta function. where Γ ( z ) is the gamma function.