Isoperimetric points and Tetrahedrons.

Geometry Level 4

The problem below is a extension of a brilliant problem of the week.

In A B C , A C = 13 , A B = 14 \triangle{ABC}, \overline{AC} = 13, \overline{AB} = 14 and B C = 15 \overline{BC} = 15 and point P P is the isoperimetric point .

Let P Q PQ . be the height of the tetrahedron above.

If the volume V V of the tetrahedron is V = 224 V = 224 , find the total surface area of the tetrahedron to six decimal places.


The answer is 274.214616.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 31, 2018

Refer to isoperimetric point .

The perimeter P = 13 + b + c = 14 + b + d = 15 + c + d b = d + 2 c = d + 1 P^{*} = 13 + b + c = 14 + b + d = 15 + c + d \implies b = d + 2 \implies c = d + 1

Using Heron's formula A A P C = 42 ( d + 8 ) ( d 5 ) , A A P B = 48 ( d + 8 ) ( d 6 ) , A B P C = 56 ( d + 8 ) ( d 7 ) A_{APC} = \sqrt{42(d + 8)(d - 5)}, A_{APB} = \sqrt{48(d + 8)(d - 6)}, A_{BPC} = \sqrt{56(d + 8)(d - 7)}

and

A A B C = 84 84 = d + 8 ( 42 ( d 5 ) + 48 ( d 6 ) + 56 ( d 7 ) ) A_{ABC} = 84 \implies 84 = \sqrt{d + 8}(\sqrt{42(d - 5)} + \sqrt{48(d - 6)} +\sqrt{56(d - 7)})

Solving for d d we obtain: d = 80 11 A P = 102 11 , C P = 91 11 d = \dfrac{80}{11} \implies \overline{AP} = \dfrac{102}{11}, \overline{CP} = \dfrac{91}{11} and B P = 80 11 \overline{BP} = \dfrac{80}{11} .

Let B D \overline{BD} be altitude in A B C : \triangle{ABC}:

A A B C = 84 = 13 2 ( B D ) B D = 168 13 A D = 70 13 A_{ABC} = 84 = \dfrac{13}{2}(\overline{BD}) \implies \overline{BD} = \dfrac{168}{13} \implies \overline{AD} = \dfrac{70}{13} .

Let A ( 0 , 0 ) , B ( 70 13 , 168 13 ) , C ( 13 , 0 ) A(0,0), \:\ B(\dfrac{70}{13},\dfrac{168}{13}),\:\ C(13,0) and P ( x 0 , y 0 ) P(x_{0},y_{0}) .

Using A P C \triangle{APC} \implies

x 0 2 + y 0 2 = 10404 121 x_{0}^2 + y_{0}^2 = \dfrac{10404}{121}

x 0 2 26 x 0 + 169 = 8281 121 x_{0}^2 - 26x_{0} + 169 = \dfrac{8281}{121}

x 0 = 1026 143 \implies x_{0} = \dfrac{1026}{143} and y 0 = 840 143 y_{0} = \dfrac{840}{143}

Point P ( 1026 143 , 840 143 ) P(\dfrac{1026}{143},\dfrac{840}{143}) .

D ( 1026 143 , 0 ) P D = 840 143 Q D = 20449 h 2 + 705600 143 A 1 = A A Q C = 1 22 20449 h 2 + 705600 D(\dfrac{1026}{143},0) \implies \overline{PD} = \dfrac{840}{143} \implies \overline{QD} = \dfrac{\sqrt{20449h^2 + 705600}}{143} \implies A_{1} = A_{\triangle{AQC}} = \dfrac{1}{22}\sqrt{20449h^2 + 705600}

For A Q A B : A_{\triangle{QAB}}:

m A B = 84 35 455 y 1092 x = 0 m_{AB} = \dfrac{84}{35} \implies 455y - 1092x = 0

P E A B \overline{PE} \perp \overline{AB} \implies m P E = 35 84 12012 y + 5005 x = 106470 x = 450 143 m_{\overline{PE}} = \dfrac{-35}{84} \implies 12012y + 5005x = 106470 \implies x = \dfrac{450}{143} and y = 1080 143 y = \dfrac{1080}{143}

E ( 450 143 , 1080 143 ) P E = 624 143 Q E = 20449 h 2 + 389376 143 E( \dfrac{450}{143},\dfrac{1080}{143}) \implies \overline{PE} = \dfrac{624}{143} \implies \overline{QE} = \dfrac{\sqrt{20449h^2 + 389376}}{143}

A 2 = A Q A B = 7 143 20449 h 2 + 389376 \implies A_{2} = A_{\triangle{QAB}} = \dfrac{7}{143}\sqrt{20449h^2 + 389376}

For A Q B C : A_{\triangle{QBC}}:

m B C = 56 33 33 y + 56 x = 728 m_{\overline{BC}} = -\dfrac{56}{33} \implies 33y + 56x = 728

P F B c m P F = 8008 y 4719 x = 13182 x = 2902 325 \overline{PF} \perp \overline{Bc} \implies m_{\overline{PF}} = 8008y - 4719x = 13182 \implies x = \dfrac{2902}{325} and y = 24696 3575 y = \dfrac{24696}{3575}

F ( 2902 325 , 24696 3575 ) P F = 7280 3575 Q F = 12780625 h 2 + 52998400 3575 F(\dfrac{2902}{325},\dfrac{24696}{3575}) \implies \overline{PF} = \dfrac{7280}{3575} \implies \overline{QF} = \dfrac{\sqrt{12780625h^2 + 52998400}}{3575} A 3 = A Q B C = 3 1430 12780625 h 2 + 52998400 \implies A_{3} = A_{\triangle{QBC}} = \dfrac{3}{1430}\sqrt{12780625h^2 + 52998400} .

and,

A 4 = A A B C = 84 A_{4} = A_{\triangle{ABC}} = 84 \implies The volume of the tetrahedron V = 28 h = 224 h = 8 V = 28h = 224 \implies h = 8

\implies

A 1 = 2014336 22 64.512412 A_{1} = \dfrac{\sqrt{2014336}}{22} \approx \boxed{64.512412}

A 2 = 7 1698112 143 63.788908 A_{2} = \dfrac{7\sqrt{1698112}}{143} \approx \boxed{63.788908}

A 3 = 3 870958400 1430 61.913296 A_{3} = \dfrac{3\sqrt{870958400}}{1430} \approx \boxed{61.913296}

and,

A 4 = 84 A_{4} = \boxed{84}

\implies The total surface area S = 274.214616 S = \boxed{274.214616} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...