Isosceles Circumcircle

Geometry Level 3

Triangle A B C ABC is an isosceles triangle with A B = B C \overline{AB}=\overline{BC} and A B C = 12 3 \angle ABC = 123 ^ \circ . Point D D is the midpoint of A C \overline{AC} , point E E is the foot of the perpendicular from D D to B C , \overline{BC}, and point F F is the midpoint of D E \overline{DE} . The intersection point of A E \overline{AE} and B F \overline{BF} is G G . What is the measure (in degrees) of B G A \angle BGA ?


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

A B C \bigtriangleup ABC is an isosceles triangle so B D A C BD \perp AC .

We have B E D D E C \bigtriangleup BED \sim \bigtriangleup DEC so B D D C = E D E C \frac {BD}{DC}=\frac {ED}{EC} .

Consider D F B \bigtriangleup DFB and C E A \bigtriangleup CEA :

We have that F D B ^ = 9 0 \widehat{FDB} =90 ^ \circ - D B C ^ = E C A ^ \widehat{DBC} =\widehat{ECA} ,

and D B C A = D B 2 D C = E D 2 E C = 2 F D 2 E C = D F C E \frac {DB}{CA}=\frac {DB}{2DC}=\frac {ED}{2EC}=\frac {2FD}{2EC}=\frac {DF}{CE}

Thus, by SAS, D F B C E A \bigtriangleup DFB \sim \bigtriangleup CEA . This implies that D A G ^ = D B G ^ \widehat{DAG}=\widehat{DBG}

Hence B G D A BGDA is a cyclic quadrilateral, so that B G A ^ = B D A ^ = 9 0 \widehat{BGA}=\widehat{BDA}=90 ^ \circ .

The angle condition given is redundant. This results in great simplification, especially for those who proceed via coordinate geometry.

Calvin Lin Staff - 7 years ago

Log in to reply

i solved it via coordinate..!!

Harmanjot Singh - 5 years, 11 months ago

The first pair of triangles can't be similar...,

Anubhav Mahapatra - 4 years ago
James Aaronson
May 20, 2014

It turns out that the angle condition on ABC is irrelevant. We can solve this problem using cartesian coordinates:

Set A = (-b,0), B = (0,a), C = (b,0), D = (0,0). Hence E = (r,s) and F = (r/2, s/2), where ar + bs = ab (E lies on BC) and as = br (DE perpendicular to BC).

This gives that r = a 2 b a 2 + b 2 r = \frac{a^2b}{a^2 + b^2} and s = a b 2 a 2 + b 2 s = \frac{ab^2}{a^2 + b^2} .

Finally, we can easily evaluate the ratio s 2 a r s r + b \frac{s-2a}{r} \frac{s}{r+b} , substituting values from above to obtain a value of -1, showing that BF and AE are perpendicular.

Hence, the answer is 90.

Debjit Mandal
May 20, 2014

first of all, note that, the problem is independent on \angle ABC CONSTRUCTION:- draw BE' on BC, such that BE'=DE; draw C'E', perpendicular to BE' and the point C' lies on the line segment BD. Let, M is the mid point of EC, then, join D and M. Let C'E' and BF intersects each other at the point M' PROOF:- \Delta BAC is isosceles, so, BD\perp\AC where, D is the mid point of AC, and DE\perp\BC, so \angle C'BE' = \angle EDC \Delta BC'E' ≅ \Delta DCE [BE' = DE, \angle C'BE' = \angle EDC, \angle BE'C' = \angle DEC = 90 ^ \circ] and \Delta BM'E' ≅ \Delta DEM[M' is the mid point of C'E' by \Delta BC'E' \sim\ \Delta BDE] so, \angle M'BE' = \angle MDE and AE\parallel\DM so, \angle AED = \angle MDE[DM is the line segment, joining the mid points of the sides AC and EC of \Delta CEA] then, \angle AED = \angle MDE = \angle M'BE' = \angle GBE \angle BEG = 90 ^ \circ - \angle AED = 90 ^ \circ - \angle GBE so, \angle BGA = \angle GBE + \angle BEG = \angle GBE + 90 ^ \circ - \angle GBE so, \angle BGA = 90 ^ \circ[ANSWER]

Kazem Sepehrinia
May 20, 2014

Let E B G = B 1 EBG=B_1 , G B D = B 2 GBD=B_2 , D A E = A 1 DAE=A_1 and D E A = E 1 DEA=E_1 . We know that E F = F D EF=FD so two triangles B E F BEF and B F D BFD have equal area, it gives 1 2 B E . B F . sin B 1 = 1 2 B E . B D . sin B 2 \frac{1}{2}BE.BF.\sin B_1=\frac{1}{2}BE.BD.\sin B_2 sin B 2 sin B 1 = B E B D = sin E D B \frac{\sin B_2}{\sin B_1}=\frac{BE}{BD}=\sin EDB its immediate that E D B = C EDB=C finally sin B 2 sin B 1 = sin C ( I ) \frac{\sin B_2}{\sin B_1}=\sin C \ \ \ (I) Now we use law of sines in triangle A D E ADE : A D sin E 1 = D E sin A 1 \frac{AD}{\sin E_1}=\frac{DE}{\sin A_1} sin A 1 sin E 1 = D E A D = D E D C = sin C \frac{\sin A_1}{\sin E_1}=\frac{DE}{AD}=\frac{DE}{DC}=\sin C it gives: sin A 1 sin E 1 = sin C ( I I ) \frac{\sin A_1}{\sin E_1}=\sin C \ \ \ (II) from two equations ( I ) (I) and ( I I ) (II) we have sin B 2 sin B 1 = sin A 1 sin E 1 ( ) \frac{\sin B_2}{\sin B_1}=\frac{\sin A_1}{\sin E_1} \ \ \ (\star) notice that A 1 + E 1 = π A D E = π ( π 2 + E D B ) = π 2 C A_1+E_1=\pi-ADE=\pi-(\frac{\pi}{2}+EDB)=\frac{\pi}{2}-C A 1 = π 2 C E 1 ( I I I ) A_1=\frac{\pi}{2}-C-E_1 \ \ \ (III) B 1 + B 2 = π ( B E D + E D B ) = π ( π 2 + E D B ) = π 2 C B_1+B_2=\pi-(BED+EDB)=\pi-(\frac{\pi}{2}+EDB)=\frac{\pi}{2}-C B 2 = π 2 C B 1 ( I V ) B_2=\frac{\pi}{2}-C-B_1 \ \ \ (IV) putting ( I I I ) (III) and ( I V ) (IV) in ( ) (\star) we get sin ( π 2 C B 1 ) sin B 1 = sin ( π 2 C E 1 ) sin E 1 \frac{\sin (\frac{\pi}{2}-C-B_1)}{\sin B_1}=\frac{\sin (\frac{\pi}{2}-C-E_1)}{\sin E_1} from here its easy to see that E 1 = B 1 E_1=B_1 . In right triangle B F E BFE we have B F E = π 2 B 1 BFE=\frac{\pi}{2}-B_1 , Now we can write in triangle F G E FGE : B G A = F G E = π B F E E 1 = π ( π 2 B 1 ) E 1 = π 2 BGA=FGE=\pi-BFE-E_1=\pi-(\frac{\pi}{2}-B_1)-E_1=\frac{\pi}{2}

Calvin Lin Staff
May 13, 2014

Let H H be the midpoint of A B AB . Since B D A C BD\perp AC , hence H H is the circumcenter of B A D BAD , which we will call Γ \Gamma . Since D H B C D E DH \parallel BC \perp DE , this shows that D E DE is tangential to Γ \Gamma . Let B F BF intersect Γ \Gamma at G G' .

Then, F E 2 = F D 2 = F G F B FE^2 = FD^2 = FG' \cdot FB by power of a point. This shows that F E G FEG' and F B E FBE are similar triangles, and thus F G E FG'E is a right angle. Since A G B AG'B is also a right angle, it shows that A , G , E A, G', E are collinear, and thus that G G' is the intersection of B F BF and A E AE , and thus G = G G=G' . Hence, A G B = 9 0 \angle AGB = 90 ^\circ .

Nicest approach here!

Kazem Sepehrinia - 3 years, 11 months ago
Pi Han Goh
May 20, 2014

Let the distance D C = m , m > 0 DC = m, m > 0

And construct the triangle ABC on the Cartesian plane, with A = ( m , 0 ) A = (-m, 0) , D D be the origin, C = ( m , 0 ) C = (m,0)

Since B C A = 180 123 2 = 28. 5 \angle BCA = \frac {180-123}{2} = 28.5 ^ \circ , then the height of the triangle D B = m tan ( 28. 5 ) DB = m \cdot \tan (28.5 ^ \circ )

From here, I will denote p = 28. 5 p = 28.5 ^ \circ for simplicity sake

So, B = ( 0 , m tan p ) B = (0, m \cdot \tan p )

The equation of B C BC is y 0 x m = tan ( 18 0 p ) \frac {y-0} {x-m} = \tan (180 ^ \circ - p ) or

y = tan p ( x m ) y = - \tan p \cdot (x - m)

Since B C BC is perpendicular to D E DE , the product of their gradient is 1 -1 , thus gradient of D E = 1 tan p = cot p DE = - \frac {1} {- \tan p } = \cot p , and therefore the equation of DE is y = cot p x y = \cot p \cdot x

When comparing equation B C BC and equation D E DE , we can solve for coordinate E:

tan p ( x m ) = x cot p - \tan p \cdot (x - m) = x \cdot \cot p

x ( tan p cot p ) = m tan p x (- \tan p - \cot p ) = -m \cdot \tan p

x = m tan p tan p + cot p \Large x = \frac { m \cdot \tan p } { \tan p + \cot p }

x = m tan 2 p tan 2 p + 1 \Large x = \frac { m \tan^2 p } { \tan^2 p + 1 }

x = m tan 2 p sec 2 p \Large x = \frac { m \tan^2 p } { \sec^2 p }

x = m sin 2 p y = m sin 2 p cot p = m sin p cos p x = m \cdot \sin^2 p \Rightarrow y = m \cdot \sin^2 p \cdot \cot p = m \cdot \sin p \cos p

E = ( m sin 2 p , m sin p cos p ) \Rightarrow E = ( m \cdot \sin^2 p , m \cdot \sin p \cos p )

Since F F is the midpoint of DE, F = ( m sin 2 p 2 , m sin p cos p 2 ) \Large F = ( \frac { m \cdot \sin^2 p } {2} , \frac {m \cdot \sin p \cos p } {2} )

So the gradient of B F BF is

m B F = m t a n p m s i n p c o s p 2 m s i n 2 p 2 \Large m_{BF} = \frac { m \cdot tanp - \frac { m \cdot sinp \cdot cosp } {2} } { \frac { m \cdot sin^2 p } {2} }

m B F = sin p cos 2 p 2 sin p sin 2 p cos p \Large m_{BF} = \frac { \sin p \cdot \cos^2 p - 2 \sin p } { \sin^2 p \cdot \cos p }

And since A = ( m , 0 ) A = (-m, 0) , we can find the gradient of AE as well

m A E = m sin p cos p m sin 2 p + m \Large m_{AE} = \frac { m \cdot \sin p \cdot \cos p } { m \cdot \sin^2 p + m }

m A E = sin p cos p sin 2 p + 1 \Large m_{AE} = \frac { \sin p \cdot \cos p } { \sin^2 p + 1 }

And hence,

m A E m B F = sin p cos p sin 2 p + 1 sin p cos 2 p 2 sin p sin 2 p cos p \Large m_{AE} \cdot m_{BF} = \frac { \sin p \cdot \cos p } { \sin^2 p + 1 } \cdot \frac { \sin p \cdot \cos^2 p - 2 \sin p } { \sin^2 p \cdot \cos p }

m A E m B F = cos 2 p 2 sin 2 p + 1 \Large m_{AE} \cdot m_{BF} = \frac { \cos^2 p - 2 } { \sin^2 p + 1 }

m A E m B F = cos 2 p 2 2 cos 2 p \Large m_{AE} \cdot m_{BF} = \frac { \cos^2 p - 2 } { 2 - \cos^2 p }

m A E m B F = 1 \Large m_{AE} \cdot m_{BF} = -1

Since their product of gradient is 1 -1 , straight lines B F BF and A E AE must be perpendicular to one another.

Thus, B G A = 9 0 \angle BGA = 90 ^ \circ

Rajarshi Banerjee
May 20, 2014

Draw the figure, then take D(0,0), A(a,0), B(0,b) & C(-a,0). As angle ABC=123, angle BAC & BCA = 28.5 AB=root(a^2+b^2) DB=b=root(a^2+b^2)sin(28.5) & b^2=(a^2+b^2)sin^2(28.5) From this equation we get: b=a tan(28.5) Thus B(0,a tan(28.5) and C(-a,0) From this we can get the equation of BC which is: y=tan(28.5)x+a tan(28.5) As DE is perpendicular to BC and passes through D(0,0) The equation of DE is: y = -cot(28.5)x From the equations of DE and BC we find the co-ordinate of E: E(-a sin^2(28.5), a sin(28.5)cos(28.5)) As F is the mid-point of DE, its co-ordinate is: F(-a/2 sin^2(28.5), a/2 sin(28.5)cos(28.5)) Using the co-ordinates of A(a,0) and E(-a sin^2(28.5), a sin(28.5)cos(28.5)) we find the slope of AE: (-sin(28.5)cos(28.5))/(1+sin^2(28.5)) Using co-ordinate of B(0, a tan(28.5)) and F(-a/2 sin^2(28.5), a/2 sin(28.5)cos(28.5)) we find the slope of BF: (-cos^2(28.5) - 2)/( sin(28.5)cos(28.5)) Multiplying the slopes we get: (cos^2(28.5) - 2)/(1+sin^2(28.5)) =(cos^2(28.5) - sin^(28.5) - cos^2(28.5) -1)/(1+sin^2(28.5)) =((-1) (sin^(28.5) + 1))/(1+sin^2(28.5)) = -1 Thus, BF and AE are mutually perpendicular to each other And therefore angle BGA must be 90 degrees

In the triangle ABC, let connect BD. BD is the median of the Isosceles triangle ABC. Now the median of an Isosceles Triangle is also the angle bisector , hence it bisects the angle ABC. BD is also the perpendicular bisector of the side AC.

As BD bisects angle ABC , therefore <CBD=61.5 deg

Now the desired <BGA= <EBF+ <AEB. -------------- (1)

as DE is perpendicular on BC , hence <BED=90

Now lets consider triangle ADE .

<AED= 90- <AEB and <EAD= <CAB-(180 -123 -<AEB)

Now as the triangle ABC is isosceles with AB=BC , hence <CAB=<BCA= (180-123)/2= 28.5

hence <EAD= 28.5 - (57 - <AEB)= <AEB - 28.5

So By applying the Sine rule in triangle ADE , we get

sin(90 - <AEB) / AD = sin (<AEB - 28.5)/ DE

sin(90 - <AEB)/ sin (<AEB - 28.5) = AD/DE= CD/DE ( As D is the midpoint of AC, hence AD=CD) ------------------------- (2)

Now from the right angled triangle CDE we can have

CD/DE= 1/sin 28.5 .

Hence denoting <AEB=x, the equation (2) can be written as

sin(90 - x) / sin(x-28.5) = 1/sin 28.5

now sin(x-28.5) = sin (-90+61.5+x) = - cos(61.5+x)

hence cos(61.5+x)/cos(x)= -cos(61.5) ( using the fact that sin(90-x)=cos x and sin (28.5) = cos (61.5) )

now by expanding cos(61.5+x) and dividing it by cos(x) we will get

2 cos (61.5)= sin (61.5) tan (x)

hence tan (<AEB) = 2/ tan (61.5) ------------------ (3)

Now lets move on to the right angled triangles BFE and BED

From the right angled triangle BED we can have tan (61.5) = DE/BE

similarly from the right angled triangle BEF we can have
tan (<EBF) =EF/BE

now as F is the midpoint of DE , hence EF= DE/2

tan (<EBF) = DE/2BE = 1/2 (DE/BE) = 1/2 tan (61.5) ---------- (4)

from equation 3 and 4 we have

tan (<AEB) = 2/tan(61.5)

tan (<EBF) = 1/2 tan (61.5)

Now from Equation 1 we have

<BGA= <EBF+ <AEB

so tan (<BGA) = tan (<EBF+ <AEB) = tan (< EBF) + tan (< AEB) / (1- tan (< EBF) tan (<AEB) )

now 1- tan (< EBF) tan (<AEB) = 1- (2 cot (61.5) * 1/2 tan (61.5) ) = 0

Therefore, tan (<BGA) tends to infinity hence <BGA=90.

黎 李
May 20, 2014

AE perpendicular to BF

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...