Isosceles Ratios

Geometry Level 4

Triangle A B C ABC is isosceles with base length = 2. The two incircles are mutually tangent.

If C D D B = 2 1 \dfrac{CD}{DB} = \dfrac{2}{1} , what is r 1 r 2 \dfrac{r_1}{r_2} ? Express this ratio as a + b c \dfrac{a + \sqrt b}{c} , where a , b , c a,b,c are positive integers and c c is square-free, and submit a + b + c a+b+c .


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 19, 2021

Let D B = a DB = a . Then C D = 2 a CD=2a and C A = 3 a CA=3a . Let D N = h DN=h be the altitude from D D to A B AB . By similar triangle, we have the altitude C M = 3 h CM=3h . By Pythagorean theorem ,

{ a = D N 2 + N B 2 = h 2 + 1 9 h = a 2 1 9 b = D N 2 + A N 2 = h 2 + 25 9 = a 2 + 8 3 \begin{cases} a = \sqrt{DN^2+NB^2} = \sqrt{h^2 + \frac 19} & \implies h = \sqrt{a^2 - \frac 19} \\ b = \sqrt{DN^2+AN^2} = \sqrt{h^2 + \frac {25}9} = \sqrt{a^2+\frac 83} \end{cases}

And the radii of the two circles are:

{ r 1 = 1 2 ( 2 3 h 2 h ) 1 2 ( 3 a + 2 a + b ) = 4 h 5 a + b = 4 9 a 2 1 15 a + 9 a 2 + 24 r 2 = 1 2 2 h 1 2 ( a + b + 2 ) = 2 h a + b + 2 = 2 9 a 2 1 3 a + 9 a 2 + 24 + 6 \begin{cases} r_1 = \dfrac {\frac 12(2\cdot 3h-2 \cdot h)}{\frac 12 (3a + 2a + b)} = \dfrac {4h}{5a+b} = \dfrac {4\sqrt{9a^2-1}}{15a+ \sqrt{9a^2+24}} \\ r_2 = \dfrac {\frac 12 \cdot 2 \cdot h}{\frac 12(a+b+2)} = \dfrac {2h}{a+b+2} = \dfrac {2\sqrt{9a^2-1}}{3a+ \sqrt{9a^2+24}+6} \end{cases}

Let the centers of the upper and lower circles be O O and P P respectively, the point where the two circles are tangent to each other be L L , C A D = ϕ \angle CAD = \phi and D A B = θ \angle DAB = \theta . Consider the length of A L AL :

O L cot C A D 2 = L P cot D A B 2 r 1 cot ϕ 2 = r 2 cot θ 2 Using tan α 2 = 1 cos α sin α 4 9 a 2 + 24 3 a = 2 ( 9 a 2 1 ) ( 3 a + 9 a 2 + 24 + 6 ) ( 9 a 2 + 24 5 ) 2 ( 3 a + 9 a 2 + 24 + 6 ) ( 9 a 2 + 24 5 ) = ( 9 a 2 1 ) ( 9 a 2 + 24 3 a ) ( a 1 ) ( 3 a + 1 ) ( 9 a 2 + 24 3 a 4 ) = 0 a = 1 , ± 1 3 \begin{aligned} OL \cdot \cot \frac {\angle CAD}2 & = LP \cdot \cot \frac {\angle DAB}2 \\ r_1 \cot \frac \phi 2 & = r_2 \cot \frac \theta 2 & \small \blue{\text{Using }\tan \frac \alpha 2 = \frac {1-\cos \alpha}{\sin \alpha}} \\ \frac 4{\sqrt{9a^2+24}-3a} & = \frac {2(9a^2-1)}{(3a+\sqrt{9a^2+24}+6)(\sqrt{9a^2+24}-5)} \\ 2(3a+\sqrt{9a^2+24}+6)(\sqrt{9a^2+24}-5) & = (9a^2-1)(\sqrt{9a^2+24}-3a) \\ (a-1)(3a+1)(\sqrt{9a^2+24}-3a-4) & = 0 \\ \implies a & = 1 , \pm \frac 13 \end{aligned}

The acceptable solution is a = 1 a=1 . Then

r 1 r 2 = 2 ( 3 a + 9 a 2 + 24 + 6 ) 15 + 9 a 2 + 24 = 2 ( 9 + 33 ) 15 + 33 = 17 33 16 \frac {r_1}{r_2} = \frac {2(3a+\sqrt{9a^2+24}+6)}{15+\sqrt{9a^2+24}} = \frac {2(9+\sqrt{33})}{15+\sqrt{33}}= \frac {17-\sqrt{33}}{16}

The required answer is 17 + 33 + 16 = 66 17+33+16 = \boxed{66} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...