It becomes child's play, part 1 (My seventh integral problem )

Calculus Level 5

2 3 [ x 2 + x + 1 ] + [ x 2 + x + 1 ] [ x 2 + x + 1 ] + [ x 2 + x + 1 ] d x \int_{2}^{3} \sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1\right]-\sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1 \right]-\cdots}}}} \, dx

If the value of the integral above is V V , input 10 V 10V as the answer.


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 8, 2016

x + 1 = ( x + 1 ) 2 x+1=\sqrt{(x+1)^2} = x 2 + x + 1 + x =\sqrt{x^2+x+1+\color{#D61F06}{x}} = x 2 + x + 1 + x 2 =\sqrt{x^2+x+1+\color{#D61F06}{\sqrt{x^2}}} = x 2 + x + 1 + x 2 + x + 1 ( x + 1 ) =\sqrt{x^2+x+1+\sqrt{x^2+x+1-\color{#624F41}{(x+1)}}} = x 2 + x + 1 + x 2 + x + 1 ( x + 1 ) 2 =\sqrt{x^2+x+1+\sqrt{x^2+x+1-\color{#624F41}{\sqrt{(x+1)^2}}}} And now the same pattern follows as that from the first step to generate the required pattern. Hence, 2 3 ( x + 1 ) d x = 1 2 ( x 2 + 2 x ) 2 3 \Large \int_{2}^3 (x+1)dx=\dfrac{1}{2}(x^2+2x)|_{\small{2}}^{\small{3}} = 7 2 =\dfrac{7}{2} 10 × 7 2 = 35 \huge \therefore 10\times\dfrac{7}{2}=\boxed{\color{#007fff}{35}}

Akshat Sharda
Feb 9, 2016

Let us first try to generalize a few things,

a + a a + a = m a a + a a + = n { a + n = m a m = n \sqrt{ a+\sqrt{ a- \sqrt{a+ \sqrt{a-\ldots } }}}=m \\ \sqrt{ a-\sqrt{ a+ \sqrt{a- \sqrt{a+\ldots } }}}=n \\\Rightarrow \begin{cases} \sqrt{a+n}=m \\ \sqrt{a-m}=n \end{cases}

Squaring both the equations,

a + n = m 2 a m = n 2 m 2 n 2 = m + n m n = 1 a+n=m^2 \\ a-m=n^2 \\ m^2-n^2=m+n \\ m-n=1

Now placing m = a + n m=\sqrt{a+n} in and squaring,

a + n = n 2 + 2 n + 1 n 2 + n + 1 a = 0 n = 1 + 1 4 ( 1 a ) 2 a+n=n^2+2n+1 \\ n^2+n+1-a=0 \\n=\frac{-1+\sqrt{1-4(1-a)}}{2}

Similarly,

m = 1 + 1 4 ( 1 a ) 2 m= \frac{1+\sqrt{1-4(1-a)}}{2}

So, in our original question, a = x 2 + x + 1 a=x^2+x+1 and therefore,

n = 1 + 1 4 ( 1 x 2 x 1 ) 2 = 1 + 4 x 2 + 4 x + 1 2 = 2 x 2 = x \begin{aligned} n & = \frac{-1+\sqrt{1-4(1-x^2-x-1)}}{2} \\ &= \frac{-1+\sqrt{4x^2+4x+1}}{2} \\ &= \frac{2x}{2}=x \end{aligned}

Similarly,

m = x + 1 m=x+1

2 3 ( x + 1 ) d x = ( x 2 2 + x ) 2 3 = 3 2 2 + 3 2 2 2 2 = 7 2 \begin{aligned} \displaystyle \int^{3}_{2}(x+1)dx & = \left(\frac{x^2}{2}+x\right) |_{\small{2}}^{\small{3}} \\ & = \frac{3^2}{2}+3-\frac{2^2}{2}-2=\boxed{\frac{7}{2}}\end{aligned}

Let { u = x 2 + x + 1 + x 2 + x + 1 x 2 + x + 1 + x 2 + x + 1 t = x 2 + x + 1 x 2 + x + 1 + x 2 + x + 1 x 2 + x + 1 + \begin{cases} u = \sqrt{x^2+x+1 + \sqrt{x^2+x+1 - \sqrt{x^2+x+1 + \sqrt{x^2+x+1 - \cdots }}}} \\ t = \sqrt{x^2+x+1 - \sqrt{x^2+x+1 + \sqrt{x^2+x+1 - \sqrt{x^2+x+1 + \cdots}}}} \end{cases}

{ u 2 = x 2 + x + 1 + t . . . ( 1 ) t 2 = x 2 + x + 1 u . . . ( 2 ) \implies \begin{cases} u^2 = x^2+x+1+t & ...(1) \\ t^2 = x^2+x+1 - u & ...(2) \end{cases} ( 1 ) ( 2 ) : u 2 t 2 = t + u ( u t ) ( u + t ) = u + t u t = 1 u = t + 1 \implies (1)-(2): u^2-t^2 = t+u \implies (u-t)(u+t) = u+t \implies u-t = 1 \implies u = t+1

( 1 ) : ( t + 1 ) 2 = x 2 + x + 1 + t t 2 + 2 t + 1 = x 2 + x + 1 + t t 2 + t + 1 = x 2 + x + 1 t = x u = x + 1 \implies (1): (t+1)^2 = x^2+x+1+ t \implies t^2+2t+1 = x^2 + x + 1 + t \implies t^2+t+1 = x^2 + x + 1 \implies t = x \implies u = x + 1

Therefore, 2 3 u d x = 2 3 ( x + 1 ) d x = [ x 2 2 + x ] 2 3 = 3 2 2 2 2 + 3 2 = 3.5 \displaystyle \int_2^3 u \ dx = \int_2^3 (x+1) \ dx = \left[\frac {x^2}2 + x \right]_2^3 = \frac {3^2-2^2}2 + 3-2 = 3.5 10 V = 10 × 3.5 = 35 \implies 10V = 10 \times 3.5 = \boxed{35} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...