It can't be zero!

Calculus Level 3

Lilly comes to question 2017 on her calculus final:

1 1 1 + x 2 d x \displaystyle \large \int_{- 1}^{1} \sqrt{1 + x^2} \ dx

She thinks to herself, "This looks like a standard u-substitution question!" and begins to work it out. "Let's see. I'm going to rewrite the integral by letting u = 1 + x 2 u = 1 + x^2 and changing the limits of integration.

For x = 1 x = - 1 , we have u = 1 + ( 1 ) 2 = 2 u = 1 + (- 1)^2 = 2 . For x = 1 x = 1 , we have u = 1 + ( 1 ) 2 = 2 u = 1 + (1)^2 = 2 . So our new integral is..."

u = 2 u = 2 \displaystyle \large \int_{u \ = \ 2}^{u \ = \ 2}

"Oh wait!" she interjects, stopping herself. "The limits of integration are the same so the integral must equal 0 0 no matter what the integrand is!" However, she realizes that f ( x ) = 1 + x 2 > 0 x f(x) = \sqrt{1 + x^2} > 0 \ \forall \ x . "As long as b > a b > a , a b 1 + x 2 d x \displaystyle \int_{a}^{b} \sqrt{1 + x^2} \ dx must always be positive. What did I do wrong?"

Can you help Lilly? If the value of the definite integral can be expressed as m + sinh 1 ( n ) \displaystyle \sqrt{m} + \sinh^{- 1} (n) for positive, square-free integers ( m , n ) (m, n) , find m + n m + n .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The integral I = 1 1 1 + x 2 d x \displaystyle I = \int_{-1}^1 \sqrt{1+x^2} \ dx is an even function. It should be I = 2 0 1 1 + x 2 d x \displaystyle I = {\color{#D61F06}2} \int_{\color{#D61F06}0}^1 \sqrt{1+x^2} \ dx .

I = 1 1 1 + x 2 d x As the integrand is even = 2 0 1 1 + x 2 d x Let x = tan θ , d x = sec 2 θ d θ = 2 0 π / 4 1 + tan 2 θ sec 2 θ d θ Note that 1 + tan 2 θ = sec 2 θ = 2 0 π / 4 sec 3 θ d θ Using reduction formula = 2 ( sec 3 2 θ tan θ 3 1 0 π / 4 + 3 2 3 1 0 π / 4 sec 3 2 θ d θ ) = 2 + 0 π / 4 sec θ d θ See note 1 below. = 2 + ln ( tan θ + sec θ ) ) 0 π / 4 = 2 + ln ( 1 + 2 ) See note 2 below. = 2 + sinh 1 1 \begin{aligned} I & = \int_{-1}^1 \sqrt{1+x^2} \ dx & \small \color{#3D99F6} \text{As the integrand is even} \\ & = {\color{#3D99F6}2} \int_{\color{#3D99F6}0}^1 \sqrt{1+x^2} \ dx & \small \color{#3D99F6} \text{Let } x = \tan \theta, \ dx = \sec^2 \theta \ d \theta \\ & = 2\int_0^{\pi/4} \sqrt{\color{#3D99F6}1+\tan^2\theta} \sec^2 \theta \ d \theta & \small \color{#3D99F6} \text{Note that }1+\tan^2 \theta = \sec^2 \theta \\ & = 2\int_0^{\pi/4} \sec^3 \theta \ d \theta & \small \color{#3D99F6} \text{Using reduction formula} \\ & = 2 \left(\frac {\sec^{3-2} \theta \tan \theta}{3-1} \bigg|_0^{\pi/4} + \frac {3-2}{3-1}\int_0^{\pi/4} \sec^{3-2} \theta \ d \theta\right) \\ & = \sqrt 2 + \color{#3D99F6}\int_0^{\pi/4} \sec \theta \ d \theta & \small \color{#3D99F6} \text{See note 1 below.} \\ & = \sqrt 2 + \color{#3D99F6} \ln(\tan \theta + \sec \theta)) \bigg|_0^{\pi/4} \\ & = \sqrt 2 + \color{#3D99F6} \ln(1 + \sqrt 2) & \small \color{#3D99F6} \text{See note 2 below.} \\ & = \sqrt 2 + \color{#3D99F6} \sinh^{-1} 1 \end{aligned}

m + n = 2 + 1 = 3 \implies m+n = 2+1 = \boxed{3}


Note 1:

I = sec x d x = sec x tan x + sec 2 x tan x + sec x d x Let u = tan x + sec x , d u = ( sec 2 x + tan x sec x ) d x = 1 u d u = ln u + C where C is the constant of integration. = ln ( tan x + sec x ) + C \small \begin{aligned} I & = \int \sec x \ dx \\ & = \int \frac {\sec x \tan x + \sec^2 x}{\tan x + \sec x} dx & \color{#3D99F6} \text{Let }u = \tan x + \sec x, \ du = (\sec^2 x + \tan x \sec x) \ dx \\ & = \int \frac 1u du \\ & = \ln u + C & \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = \ln(\tan x + \sec x) + C \end{aligned}

Note 2:

sinh ( ln ( 1 + 2 ) ) = e ln ( 1 + 2 ) e ln ( 1 + 2 ) 2 = 1 + 2 1 1 + 2 2 = 1 + 2 2 1 ( 2 + 1 ) ( 2 1 ) 2 = 1 + 2 2 + 1 2 = 1 sinh 1 1 = ln ( 1 + 2 ) \small \begin{aligned} \sinh \left(\ln(1+\sqrt 2)\right) & = \frac {e^{\ln(1+\sqrt 2)} - e^{-\ln(1+\sqrt 2)}}2 \\ & = \frac {1 + \sqrt 2 - \frac 1{1+\sqrt 2}}2 \\ & = \frac {1 + \sqrt 2 - \frac {\sqrt 2-1}{(\sqrt 2+1)(\sqrt 2-1)}}2 \\ & = \frac {1+\sqrt 2 - \sqrt 2 + 1}2 = 1 \\ \implies \sinh^{-1} 1 & = \ln (1+\sqrt 2) \end{aligned}

I did the same till the l n ( 1 + 2 ) ln(1+\sqrt{2}) step. Then I couldn't find a way to get into hyperbolic sine. Thanks for that clarification!

Rajdeep Ghosh - 3 years, 11 months ago
Mrudul Aluri
Jul 13, 2017

1 1 1 + x 2 d x \displaystyle \large \int_{- 1}^{1} \sqrt{1 + x^2} \ dx

Since the function 1 + x 2 is even, the above integral can be written as - I = 2 0 1 1 + x 2 d x l e t sinh ( u ) = x cosh ( u ) d u = d x . I = 2 x = 0 1 1 + sinh 2 ( u ) cosh ( u ) d u = 2 x = 0 1 cosh 2 ( u ) cosh ( u ) d u . 2 x = 0 1 cosh 2 ( u ) d u I = 2 x = 0 1 cosh ( 2 u ) + 1 2 d u cosh ( 2 u ) = 2 cosh 2 ( u ) 1 cosh 2 ( u ) = cosh ( 2 u ) + 1 2 I = 2 1 2 x = 0 1 cosh ( 2 u ) + 1 d u = ( sinh ( 2 u ) 2 + u ) x = 0 1 I = ( 2 sinh ( u ) cosh ( u ) 2 + u ) x = 0 1 sinh ( 2 u ) = 2 sinh ( u ) cosh ( u ) Writing I in terms of x we get - I = ( x 1 + x 2 + sinh 1 ( x ) ) x = 0 1 sinh ( u ) = x , cosh ( u ) = 1 + sinh 2 ( u ) cosh ( u ) = 1 + x 2 I = ( 1 1 + 1 2 + sinh 1 ( 1 ) 0 1 + 0 2 sinh 1 ( 0 ) ) = ( 2 + sinh 1 ( 1 ) ) I = 2 + sinh 1 ( 1 ) m = 2 , n = 1 m + n = 3 \text{Since the function } \sqrt{1+x^2} \ \text{ is even, the above integral can be written as -} \\ I = \displaystyle 2\int_{0}^{1} \sqrt{1 + x^2} \ dx\ \quad\quad\small{{\color{#3D99F6}let \sinh(u) = x \implies \cosh(u)du = dx.}} \\ \implies {I = } \displaystyle 2\int_{x=0}^1 {\color{#3D99F6}\sqrt{1+ \sinh^2(u)}}{\color{#3D99F6}\cosh(u) du} = \displaystyle 2\int_{x=0}^1 \sqrt{\cosh^2(u)}\cosh(u) du. \\ \implies \displaystyle 2\int_{x=0}^1 \cosh^2(u)du \\ \implies \displaystyle I = 2\int_{x=0}^1 \frac{\cosh(2u)+1}{2} du \quad\quad { \small \color{#3D99F6} \bigg|\cosh(2u) = 2\cosh^2(u) - 1 \implies \cosh^2(u) = \small \frac{\cosh(2u)+1}{\color{#3D99F6}2}} \\ \implies I= \displaystyle 2\cdot\frac12\int_{x=0}^1 \cosh(2u) + 1 du = \left(\frac{\sinh(2u)}{2} + u \right){\bigg|_{x=0}^1} \\ \implies I = \displaystyle \left( \frac{2\sinh(u)\cosh(u)}{2} + u \right){\bigg|_{x=0}^1} \quad\quad \small{\color{#3D99F6} \bigg|\sinh(2u) = 2\sinh(u)\cosh(u)} \\ \text{Writing I in terms of x we get -} \\ I = \displaystyle \left({\color{#3D99F6}x} {\color{#3D99F6}\sqrt{1+x^2}} + \sinh^{-1}({\color{#3D99F6}x}) \right){\bigg|_{x=0}^1} \quad\quad\small{\color{#3D99F6} \bigg|\sinh(u) = x, \ \cosh(u) = }{\color{#3D99F6}\sqrt{1+\sinh^2(u)}} \implies {\color{#3D99F6}\cosh(u) = } {\color{#3D99F6}\sqrt{1+x^2}} \\ \implies I = \displaystyle (1\cdot \sqrt{1+1^2} + \sinh^{-1}(1) - 0\cdot \sqrt{1+0^2} - \sinh^{-1}(0)) = \boxed{\displaystyle (\sqrt{2} + \sinh^{-1}(1))} \\ \implies \boxed{\displaystyle I = \sqrt{2} + \sinh^{-1}(1)} \quad\quad \small \color{#3D99F6} \implies m = 2, n = 1 \\ \implies m + n = \boxed3

Domenico Chilà
Jul 14, 2017

1 + x 2 d x \int { \sqrt { 1+{ x }^{ 2 } } } dx

Substitute t = x + 1 + x 2 x = t 2 1 2 t d x = t 2 + 1 2 t 2 t=x+\sqrt { 1+{ x }^{ 2 } } \\ x=\frac { { t }^{ 2 }-1 }{ 2t } \\ dx=\frac { { t }^{ 2 }+1 }{ 2{ t }^{ 2 } }

1 + x 2 d x \int { \sqrt { 1+{ x }^{ 2 } } } dx = 1 4 t 4 + 2 t 2 + 1 t 3 d t = t 2 8 + l n t 2 1 8 t 2 = ( x + 1 + x 2 ) 2 8 + l n x + 1 + x 2 2 1 8 ( x + 1 + x 2 ) 2 \frac { 1 }{ 4 } \int { \frac { { t }^{ 4 }+{ 2t }^{ 2 }+1 }{ { t }^{ 3 } } } dt\quad =\quad \frac { { t }^{ 2 } }{ 8 } +\frac { ln|t| }{ 2 } -\frac { 1 }{ 8{ t }^{ 2 } } \quad =\quad \frac { { (x+\sqrt { 1+{ x }^{ 2 } } ) }^{ 2 } }{ 8 } +\frac { ln|x+\sqrt { 1+{ x }^{ 2 } } | }{ 2 } -\frac { 1 }{ 8({ x+\sqrt { 1+{ x }^{ 2 } } ) }^{ 2 } }

So, its value between -1 and 1 is 2 + l n ( 3 + 8 ) \sqrt { 2 } +ln(\sqrt { 3+\sqrt { 8 } } )

Considering 3 + 8 \sqrt { 3+\sqrt { 8 } } as 3 + 1 2 + 3 1 2 = 2 + 1 \sqrt { \frac { 3+1 }{ 2 } } +\sqrt { \frac { 3-1 }{ 2 } } =\quad \sqrt { 2 } +1

The value of the integral is 2 + l n ( 1 + 2 ) = 2 + sinh 1 ( 1 ) \sqrt { 2 } +ln(1+\sqrt { 2 } )=\sqrt { 2 } +\sinh ^{ -1 }{ (1) }

So, m+n=2+1=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...