It Golden!

Geometry Level 3

In A B C \triangle{ABC} , A B = a x \overline{\rm AB} = ax , A C = x \overline{\rm AC} = x , A D = 1 \overline{\rm AD} = 1 , B C = ( a + 1 ) 2 ( a + 1 ) a \overline{\rm BC} = \dfrac{(a + 1)\sqrt{2(a + 1)}}{a} , m B A D = m D A C = 6 0 m\angle{BAD} = m\angle{DAC} = 60^{\circ} , and the area of A B C \triangle ABC , A A B C = k q ϕ 3 A_{\triangle{ABC}} = \dfrac{\sqrt{k}}{q}\phi^3 , where ϕ = 1 + 5 2 \phi = \dfrac {1+\sqrt 5}2 denotes the golden ratio , and k k and q q are coprime positive integers. Find k + q k + q .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 23, 2020

By cosine rule , { B D 2 = a 2 x 2 + 1 2 a x cos 6 0 = a 2 x 2 a x + 1 D C 2 = x 2 + 1 2 x cos 6 0 = x 2 x + 1 \begin{cases} BD^2 = a^2x^2 + 1 - 2ax\cos 60^\circ = a^2x^2 - ax + 1 \\ DC^2 = x^2 + 1 - 2x \cos 60^\circ = x^2 - x + 1 \end{cases}

By angle bisector theorem , B D A B = D C C A B D a x = D C x B D = a D C \dfrac {BD}{AB} = \dfrac {DC}{CA} \implies \dfrac {BD}{ax} = \dfrac {DC}x \implies BD = a \cdot DC . Therefore,

B D 2 = a 2 D C 2 a 2 x 2 a x + 1 = a 2 x 2 a 2 x + a 2 a 2 x a x = a 2 1 x = a 2 1 a ( a 1 ) = a + 1 a \begin{aligned} BD^2 & = a^2 \cdot DC^2 \\ a^2x^2 - ax + 1 & = a^2x^2 - a^2x + a^2 \\ a^2x - ax & = a^2 - 1 \\ \implies x & = \frac {a^2-1}{a(a-1)} = \frac {a+1}a \end{aligned}

By cosine rule again,

B C 2 = A B 2 + C A 2 2 A B C A cos B A C ( ( a + 1 ) 2 ( a + 1 ) a ) 2 = a 2 x 2 + x 2 2 a x 2 cos 12 0 2 ( a + 1 ) 3 a 2 = a 2 x 2 + x 2 + a x 2 = ( a 2 + a + 1 ) x 2 2 ( a + 1 ) 3 a 2 = ( a 2 + a + 1 ) ( a + 1 a ) 2 2 ( a + 1 ) = a 2 + a + 1 a 2 a 1 = 0 a = φ where φ is golden ratio. \begin{aligned} BC^2 & = AB^2 + CA^2 - 2AB \cdot CA \cos \angle BAC \\ \left(\frac {(a+1)\sqrt{2(a+1)}}a\right)^2 & = a^2x^2 + x^2 - 2ax^2 \cos 120^\circ \\ \frac {2(a+1)^3}{a^2} & = a^2x^2 + x^2 + ax^2 = (a^2+a+1)x^2 \\ \frac {2(a+1)^3}{a^2} & = (a^2+a+1)\left(\frac {a+1}a\right)^2 \\ 2(a+1) & = a^2 + a + 1 \\ a^2 - a - 1 & = 0 \\ \implies a & = \varphi & \small \blue{\text{where }\varphi \text{ is golden ratio.}} \end{aligned}

Then x = φ + 1 φ = φ 2 φ = φ x = \dfrac {\varphi+1}\varphi = \dfrac {\varphi^2}\varphi = \varphi and A A B C = a x x sin 12 0 2 = 3 φ 3 4 A_{\triangle ABC} = \dfrac {ax \cdot x \sin 120^\circ}2 = \dfrac {\sqrt 3 \varphi^3}4 . Therefore k + q = 3 + 4 = 7 k+q = 3+4 = \boxed 7 .

Rocco Dalto
Nov 22, 2020

α + λ = 6 0 α = 6 0 λ \alpha + \lambda = 60^{\circ} \implies \alpha = 60^{\circ} - \lambda

Using the law of cosines on A B C \triangle{ABC} with included B A C y = a 2 + a + 1 x = p x \angle{BAC} \implies y = \sqrt{a^2 + a + 1}x = px , where p = a 2 + a + 1 p = \sqrt{a^2 + a + 1} .

Using the law of sines on A B C a x sin ( λ ) = p x sin ( 12 0 ) = 2 p x 3 \triangle{ABC} \implies \dfrac{ax}{\sin(\lambda)} = \dfrac{px}{\sin(120^{\circ})} = \dfrac{2px}{\sqrt{3}} \implies

sin ( λ ) = 3 a 2 p \sin(\lambda) = \dfrac{\sqrt{3}a}{2p}

Using the law of sines on D A C 1 sin ( λ ) = n sin ( 6 0 ) = 2 n 3 \triangle{DAC} \implies \dfrac{1}{\sin(\lambda)} = \dfrac{n}{\sin(60^{\circ})} = \dfrac{2n}{\sqrt{3}} \implies

n = 3 2 sin ( λ ) = p a n = \dfrac{\sqrt{3}}{2\sin(\lambda)} = \boxed{\dfrac{p}{a}}

Similarly using the law of sines on B A D m = 3 2 sin ( α ) = \triangle{BAD} \implies m = \dfrac{\sqrt{3}}{2\sin(\alpha)} = 3 2 sin ( 6 0 λ ) = \dfrac{\sqrt{3}}{2\sin(60^{\circ} - \lambda)} =

3 3 cos ( λ ) sin ( λ ) = 2 p 4 p 2 3 a 2 a = \dfrac{\sqrt{3}}{\sqrt{3}\cos(\lambda) - \sin(\lambda)} = \dfrac{2p}{\sqrt{4p^2 - 3a^2} - a} = 2 p 2 = p \dfrac{2p}{2} = \boxed{p}

where cos ( λ ) = 4 p 2 3 a 2 2 p = a + 2 2 p \cos(\lambda) = \dfrac{\sqrt{4p^2 - 3a^2}}{2p} = \dfrac{a + 2}{2p}

y = m + n = p ( a + 1 ) a = a + 1 a a 2 + a + 1 = \implies y = m + n = \dfrac{p(a + 1)}{a} = \dfrac{a + 1}{a}\sqrt{a^2 + a + 1} = a + 1 a 2 ( a + 1 ) \dfrac{a + 1}{a}\sqrt{2(a + 1)}

a 2 a 1 = 0 a = 1 + 5 2 = ϕ \implies a^2 - a - 1 = 0 \implies a = \dfrac{1 + \sqrt{5}}{2} = \phi , for a > 0 a > 0

y = a + 1 a a 2 + a + 1 = 3 + 5 1 + 5 3 + 5 = \implies y = \dfrac{a + 1}{a}\sqrt{a^2 + a + 1} = \dfrac{3 + \sqrt{5}}{1 + \sqrt{5}}\sqrt{3 + \sqrt{5}} =

( 1 + 5 2 ) 3 + 5 = 3 + 5 ϕ (\dfrac{1 + \sqrt{5}}{2})\sqrt{3 + \sqrt{5}} = \sqrt{3 + \sqrt{5}}\phi

and y = p x = p a + 1 a x = a + 1 a = ϕ = a y = px = p\dfrac{a + 1}{a} \implies x = \dfrac{a + 1}{a} = \phi = a

and sin ( λ ) = 3 2 a p = 3 2 1 3 + 5 ϕ \sin(\lambda) = \dfrac{\sqrt{3}}{2}\dfrac{a}{p} = \dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{3 + \sqrt{5}}}\phi

\implies the height h = x sin ( λ ) = 3 2 1 3 + 5 ϕ 2 h = x\sin(\lambda) = \dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{3 + \sqrt{5}}}\phi^2

A A B C = 1 2 y h = 3 4 ϕ 3 = \implies A_{\triangle{ABC}} = \dfrac{1}{2}yh = \dfrac{\sqrt{3}}{4}\phi^3 = k q ϕ 3 k + q = 7 \dfrac{\sqrt{k}}{q}\phi^3 \implies k + q = \boxed{7} .

Below is the triangle with the assigned values:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...