It is indeed a Geometry Problem!

Geometry Level 5

{ x y + y z + z x = 1 6 x + 1 x = 8 y + 1 y = 10 z + 1 z \begin{cases} \begin{aligned}xy+yz+zx&=1 \\\\ \dfrac{6}{x+\frac{1}{x}}=\dfrac{8}{y+\frac{1}{y}}&=\dfrac{10}{z+\frac{1}{z}}\end{aligned} \end{cases}

x , y , x,y, and z z are real numbers satisfying the system of equations above.

If x 2 + y 2 + z 2 = m n x^2+y^2+z^2 = \frac{m}{n} , where m m and n n are coprime positive integers, find m + n m+n .


The answer is 321602.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Reynan Henry
Dec 31, 2016

Let x = tan A 2 , y = tan B 2 , z = tan C 2 x=\tan{\frac{A}{2}},y=\tan{\frac{B}{2}},z=\tan{\frac{C}{2}} for some A B C \triangle ABC with side a , b , c a,b,c

6 x + 1 x = 3 sin A 8 y + 1 y = 4 sin B 10 z + 1 z = 5 sin C \begin{aligned} &\frac{6}{x+\frac{1}{x}}=3\sin{A}\\&\frac{8}{y+\frac{1}{y}}=4\sin{B}\\&\frac{10}{z+\frac{1}{z}}=5\sin{C} \end{aligned}

so we have A B C \triangle ABC with sin A : sin B : sin C = a : b : c = 20 : 15 : 12 \sin{A}:\sin{B}:\sin{C}=a:b:c=20:15:12 . From this we get

cos A = 1 5 2 + 1 2 2 2 0 2 2 15 12 = 31 360 cos B = 2 0 2 + 1 2 2 1 5 2 2 20 12 = 319 480 cos C = 2 0 2 + 1 5 2 1 2 2 2 20 15 = 581 600 and then we get cos 2 A 2 = cos A + 1 2 = 329 720 , sec 2 A 2 = 720 329 , tan 2 A 2 = 391 329 cos 2 B 2 = cos B + 1 2 = 799 960 , sec 2 B 2 = 960 799 , tan 2 B 2 = 161 799 cos 2 C 2 = cos C + 1 2 = 1081 1200 , sec 2 C 2 = 1200 1081 , tan 2 C 2 = 119 1081 \begin{aligned} &\cos{A}=\frac{15^2+12^2-20^2}{2\cdot 15\cdot 12}=\frac{-31}{360} \\ &\cos{B}=\frac{20^2+12^2-15^2}{2\cdot 20 \cdot 12}=\frac{319}{480}\\& \cos{C}= \frac{20^2+15^2-12^2}{2\cdot 20 \cdot 15}=\frac{581}{600} \\ &\text{and then we get} \\ & \cos^2{\frac{A}{2}}=\frac{\cos{A}+1}{2}=\frac{329}{720},\sec^2{\frac{A}{2}}=\frac{720}{329},\tan^2{\frac{A}{2}}=\frac{391}{329} \\ & \cos^2{\frac{B}{2}}=\frac{\cos{B}+1}{2}=\frac{799}{960},\sec^2{\frac{B}{2}}=\frac{960}{799},\tan^2{\frac{B}{2}}=\frac{161}{799}\\& \cos^2{\frac{C}{2}}=\frac{\cos{C}+1}{2}=\frac{1081}{1200},\sec^2{\frac{C}{2}}=\frac{1200}{1081},\tan^2{\frac{C}{2}}=\frac{119}{1081}\end{aligned}

finally we get x 2 + y 2 + z 2 = tan 2 A 2 + tan 2 B 2 + tan 2 C 2 = 192963 128639 x^2+y^2+z^2=\tan^2{\frac{A}{2}}+\tan^2{\frac{B}{2}}+\tan^2{\frac{C}{2}}=\frac{192963}{128639} and m + n = 321602 m+n=321602

Great solution. Thank you for a great problem. I learned something new today.

Hosam Hajjir - 4 years, 5 months ago

How does 6/(x+1/x)=3sinA?

Ashish Sacheti - 4 years, 5 months ago

Log in to reply

That's the Half Angle Tangent Substitution .

Calvin Lin Staff - 4 years, 5 months ago

put x = tan A 2 x=\tan{\frac{A}{2}} and use the fact that tan 2 A 2 + 1 = sec 2 A 2 \tan^2{\frac{A}{2}}+1=\sec^2{\frac{A}{2}} and 2 sin A 2 cos A 2 = sin 2 A 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{2A}

Reynan Henry - 4 years, 5 months ago

Log in to reply

Typo here....

Ayush Pattnayak - 2 years, 2 months ago

Instead of finding cos^2(A/2)....We can directly find tan^2(A/2) by using half angle formula ....Since we know the sides ratio we can find semi perimeter and can find tan^2(A/2)

Sudhamsh Suraj - 4 years, 5 months ago

The title was a big hint

Ashwath Bhat - 4 years, 4 months ago

Typo in second line.

Lolly Lau - 4 years, 5 months ago

Log in to reply

thanks fixed

Reynan Henry - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...