It is clean harmonics

Calculus Level 5

n = 1 ( ( H n ) 2 2 n 1 n 2 ) = ( ln x ) 2 , x = ? \sum _{ n=1 }^{ \infty }{ \left( \frac { { \left( { H }_{ n } \right) }^{ 2 } }{ { 2 }^{ n } } -\frac { 1 }{ { n }^{ 2 } } \right) } ={ \left( \ln { x } \right) }^{ 2 }, \ \ \ \ \ x = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Apr 7, 2016

Goal: Evaluate

n = 1 H n 2 x n \sum_{n=1}^{\infty} H_n^2 x^n


S = n = 1 H n 2 x n = 1 x n = 2 ( H n 1 n ) 2 x n = 1 x [ n = 1 H n 2 x n + n = 2 1 n 2 x n 2 n = 2 H n n x n ] 1 S=\sum _{n=1}^{\infty }H_n^2x^n=\frac{1}{x}\sum _{n=2}^{ \infty}\left(H_n-\frac{1}{n}\right)^2x^n=\frac{1}{x}\left[\sum _{n=1}^{\infty}H_n^2x^n+\sum _{n=2}^{\infty}\frac{1}{n^2}x^n-2\sum _{n=2}^{\infty}\frac{H_n}{n}x^n\right]-1

= 1 x [ S + Li 2 ( x ) 2 n = 1 H n n x n ] =\frac{1}{x}\left[S+\text{Li}_2\left(x\right)-2\sum _{n=1}^{\infty}\frac{H_n}{n}x^n\right]

S = ( 1 x 1 ) ( Li 2 ( x ) 2 n = 1 H n n x n ) S=\left(\frac{1}{x-1}\right)\left(\text{Li}_2\left(x\right)-2\sum _{n=1}^{\infty}\frac{H_n}{n}x^n\right)

To evaluate n = 1 H n n x n \sum _{n=1}^{\infty}\frac{H_n}{n}x^n we can make use of the harmonic generating function n = 1 H k x k = ln ( 1 z ) z 1 \sum _{n=1}^{ \infty}H_kx^k=\frac{\ln \left(1-z\right)}{z-1}

Integrating the generating function gives

n = 1 H n n x n = Li 2 ( x ) + 1 2 ln 2 ( 1 x ) \sum _{n=1}^{\infty}\frac{H_n}{n}x^n=\text{Li}_2\left(x\right)+\frac{1}{2}\ln ^2\left(1-x\right)

Putting it all together gives

S = Li 2 ( x ) + ln 2 ( 1 x ) 1 x S=\frac{\text{Li}_2\left(x\right)+\ln ^2\left(1-x\right)}{1-x}

Substituting x = 1 / 2 x=1/2 and using the reflection formula for the dilogarithm function gives

S = n = 1 H n 2 2 n = π 2 6 + ln 2 ( 2 ) S=\sum _{n=1}^{\infty }\frac{H_n^2}{2^n}=\frac{\pi ^2}{6}+\ln ^2\left(2\right)

The answer follows

Nicely done!+1!

Joel Yip - 5 years, 2 months ago

i tried this upside down, stared at it from 5 feet away for 30 seconds or more. i have not been able to see a boat

Chris Stringer - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...