it is not 3 0 30^\circ

Geometry Level 3

An isosceles triangle A B C ABC with A B = A C AB=AC and D D on A B AB and E E on A C AC has E B C = 3 6 \angle EBC=36^\circ , D C B = 3 4 \angle DCB=34^\circ , and B A C = 2 2 \angle BAC=22^\circ . Find the measure of C D E \angle CDE . Round your answer to the nearest whole degree.


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marta Reece
Apr 27, 2017

Some of the easily obtainable angles are listed in the image above.

Let’s set E F = 1 EF=1 . From repeated use of the law of sines in triangles E F C , C F B EFC, CFB , and B F D BFD we get

D F = a = sin 65 sin 45 sin 34 sin 36 sin 43 sin 67 = 0.9034 DF=a=\frac{\sin65}{\sin45}\frac{\sin34}{\sin36}\frac{\sin43}{\sin67}=0.9034

From law of cosines in D E F \triangle DEF the side D E = b = 1 + a 2 2 a cos 11 0 = 1.56 DE=b=\sqrt{1+a^2-2a\cos110^\circ}=1.56

So the angle α \alpha , also from the law of cosines in the same triangle

α = arccos ( a 2 + b 2 1 2 a b ) 3 7 \alpha=\arccos(\frac{a^2+b^2-1}{2ab})\approx\boxed{37^\circ}

Chew-Seong Cheong
Apr 28, 2017

Since A B C \triangle ABC is isosceles, A B C = A C B = 18 0 2 2 2 = 7 9 \angle ABC = \angle ACB = \dfrac {180^\circ - 22^\circ}2=79^\circ . Then B E C = 18 0 3 6 7 9 = 6 5 \angle BEC = 180^\circ - 36^\circ - 79^\circ = 65^\circ and B D C = 18 0 3 4 7 9 = 6 7 \angle BDC = 180^\circ - 34^\circ - 79^\circ = 67^\circ .

Let B C = 1 BC=1 and use sine rule on B E C \triangle BEC :

B C sin B E C = E C sin E B C 1 sin 6 5 = E C sin 3 6 E C = sin 3 6 sin 6 5 \begin{aligned} \frac {BC}{\sin \angle BEC} & = \frac {EC}{\sin \angle EBC} \\ \frac 1{\sin 65^\circ} & = \frac {EC}{\sin 36^\circ} \\ \implies EC & = \frac {\sin 36^\circ}{\sin 65^\circ} \end{aligned}

Using sine rule on B D C \triangle BDC :

B C sin B D C = D C sin D B C 1 sin 6 7 = D C sin 7 9 D C = sin 7 9 sin 6 7 \begin{aligned} \frac {BC}{\sin \angle BDC} & = \frac {DC}{\sin \angle DBC} \\ \frac 1{\sin 67^\circ} & = \frac {DC}{\sin 79^\circ} \\ \implies DC & = \frac {\sin 79^\circ}{\sin 67^\circ} \end{aligned}

Let C D E = α \angle CDE = \alpha . We note that a n g l e D C E = 7 9 3 4 = 4 5 angle DCE = 79^\circ - 34^\circ = 45^\circ and D E C = 18 0 4 5 α = 13 5 α \angle DEC = 180^\circ - 45^\circ - \alpha = 135^\circ - \alpha . Using sine rule on C D E \triangle CDE :

sin C D E E C = sin D E C D C sin α E C = sin ( 13 5 α ) D C Note that sin ( 18 0 x ) = sin x D C sin α = E C sin ( 4 5 + α ) D C sin α = E C 2 ( sin α + cos α ) tan α = E C 2 D C E C = 1 2 D C E C 1 = 1 2 sin 7 9 sin 6 5 sin 6 7 sin 3 6 1 0.646378022 α 3 7 \begin{aligned} \frac {\sin \angle CDE}{EC} & = \frac {\sin \angle DEC}{DC} \\ \frac {\sin \alpha}{EC} & = \frac {\color{#3D99F6}\sin (135^\circ - \alpha)}{DC} & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - x) = \sin x \\ DC \sin \alpha & = EC \color{#3D99F6} \sin (45^\circ + \alpha) \\ DC \sin \alpha & = \frac {EC}{\sqrt 2} (\sin \alpha + \cos \alpha) \\ \implies \tan \alpha & = \frac {EC}{\sqrt 2 DC - EC} \\ & = \frac 1{\frac {\sqrt 2 DC}{EC} - 1} \\ & = \frac 1{\frac {\sqrt 2 \sin 79^\circ \sin 65^\circ}{\sin 67^\circ \sin 36^\circ}-1} \\ & \approx 0.646378022 \\ \implies \alpha & \approx \boxed{37^\circ} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...