It is not hard as it looks!

Algebra Level 4

α 6 + β 6 + γ 6 + ( α β ) 3 + ( β γ ) 3 + ( α γ ) 3 \large\alpha^6 + \beta^6 + \gamma^6 + (\alpha\beta)^3 + (\beta\gamma)^3 + (\alpha\gamma)^3

Let α , β \alpha, \beta and γ \gamma be the zeroes of the polynomial x 3 x 1 x^3-x-1 . Find the value of the expression above.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
May 22, 2016

As α \alpha , β \beta and γ \gamma are zeroes or roots of x 3 x 1 = 0 x^3 - x - 1 = 0 , by Vieta's formulas, we have: { α + β + γ = 0 α β + β γ + γ α = 1 \begin{cases} \color{#3D99F6}{\alpha + \beta + \gamma = 0} \\ \color{#D61F06}{\alpha \beta + \beta \gamma + \gamma \alpha = -1} \end{cases} .

From x 3 x 1 = 0 x^3-x-1 = 0 , x 3 = x + 1 \implies x^3 = x+1

{ α 3 = α + 1 α 6 = ( α + 1 ) 2 = α 2 + 2 α + 1 β 3 = β + 1 β 6 = ( β + 1 ) 2 = β 2 + 2 β + 1 γ 3 = γ + 1 γ 6 = ( γ + 1 ) 2 = γ 2 + 2 γ + 1 \implies \begin{cases} \alpha^3 = \alpha + 1 & \implies \alpha^6 = (\alpha + 1)^2 = \alpha^2 + 2 \alpha + 1 \\ \beta^3 = \beta + 1 & \implies \beta^6 = (\beta + 1)^2 = \beta^2 + 2 \beta + 1 \\ \gamma^3 = \gamma + 1 & \implies \gamma^6 = (\gamma + 1)^2 = \gamma^2 + 2 \gamma + 1 \end{cases}

α 6 + β 6 + γ 6 = α 2 + β 2 + γ 2 + 2 ( α + β + γ ) + 3 = ( α + β + γ ) 2 2 ( α β + β γ + γ α ) + 2 ( α + β + γ ) + 3 = 0 2 ( 1 ) + 2 ( 0 ) + 3 = 5 \begin{aligned} \implies \alpha^6 + \beta^6 + \gamma^6 & = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha + \beta + \gamma) + 3 \\ & = (\color{#3D99F6}{\alpha + \beta + \gamma})^2 - 2(\color{#D61F06}{\alpha \beta + \beta \gamma + \gamma \alpha}) + 2(\color{#3D99F6}{\alpha + \beta + \gamma}) + 3 \\ & = \color{#3D99F6}{0} - 2(\color{#D61F06}{-1}) + 2(\color{#3D99F6}{0}) + 3 \\ & = 5 \end{aligned}

{ ( α β ) 3 = α 3 β 3 = ( α + 1 ) ( β + 1 ) = α β + α + β + 1 ( β γ ) 3 = β 3 γ 3 = ( β + 1 ) ( γ + 1 ) = β γ + β + γ + 1 ( γ α ) 3 = γ 3 α 3 = ( γ + 1 ) ( α + 1 ) = γ α + γ + α + 1 \implies \begin{cases} (\alpha\beta)^3 = \alpha^3 \beta^3 = (\alpha + 1)(\beta + 1) = \alpha \beta + \alpha + \beta + 1 \\ (\beta\gamma)^3 = \beta^3 \gamma^3 = (\beta + 1)(\gamma + 1) = \beta\gamma + \beta + \gamma + 1 \\ (\gamma\alpha)^3 = \gamma^3 \alpha^3 = (\gamma+1)(\alpha + 1) = \gamma \alpha + \gamma + \alpha + 1 \end{cases}

( α β ) 3 + ( β γ ) 3 + ( γ α ) 3 = α β + β γ + γ α + 2 ( α + β + γ ) + 3 = 1 + 2 ( 0 ) + 3 = 2 \begin{aligned} \implies (\alpha\beta)^3 + (\beta\gamma)^3 + (\gamma\alpha)^3 & = \color{#D61F06}{\alpha \beta + \beta \gamma + \gamma \alpha} + 2(\color{#3D99F6}{\alpha + \beta + \gamma}) + 3 \\ & = \color{#D61F06}{-1} + 2(\color{#3D99F6}{0}) + 3 \\ & = 2 \end{aligned}

Therefore, α 6 + β 6 + γ 6 + ( α β ) 3 + ( β γ ) 3 + ( γ α ) 3 = 5 + 2 = 7 \alpha^6 + \beta^6 + \gamma^6 + (\alpha\beta)^3 + (\beta\gamma)^3 + (\gamma\alpha)^3 = 5 + 2 = \boxed{7}

@Rishabh Cool why have you deleted your solution?

Rohit Udaiwal - 5 years ago

Brilliant method than mine!! But I couldn't completely understand the second part of the problem i.e. ( α β ) 3 (\alpha\beta)^3 part. How is it possible?? Please explain it to me.

Puneet Pinku - 5 years ago

Log in to reply

( α β ) 3 = α 3 β 3 = ( α + 1 ) ( β + 1 ) (\alpha\beta)^3 = \alpha^3 \beta^3 = (\alpha+1)(\beta+1)

Chew-Seong Cheong - 5 years ago

Log in to reply

Alright! Thankyou sir!!

Puneet Pinku - 5 years ago

Sir, could you also post a solution to my problem Disturbing Coefficients

Puneet Pinku - 5 years ago

Since we have α 3 = ( α + 1 ) \alpha^3=(\alpha+1) and β 3 = ( β + 1 ) \beta^3=(\beta+1) ,multiplying both equations we get ( α β ) 3 = ( α + 1 ) ( β + 1 ) . (\alpha\beta)^3=(\alpha+1)(\beta+1).

Rohit Udaiwal - 5 years ago

Log in to reply

Ah! Now I see that comes straight from the equation.initially I thought it was some kind of identity etc. Thankyou!

Puneet Pinku - 5 years ago
Puneet Pinku
May 21, 2016

Aditya Dhawan
May 24, 2016

L e t f ( y ) b e a f u n c t i o n w h o s e r o o t s a r e c u b e s o f t h o s e o f f ( x ) = x 3 x 1 y = x 3 x = y 3 P l u g g i n g i n t o f ( x ) , w e g e t y y 3 1 = 0 y 3 3 y 2 + 2 y 1 = 0 , w h o s e r o o t s a r e α 3 , β 3 , γ 3 N o w α 3 + β 3 + γ 3 = 3 a n d ( α β ) 3 + ( β γ ) 3 + ( α γ ) 3 = 2 α 6 + β 6 + γ 6 = ( α 3 + β 3 + γ 3 ) 2 2 [ ( α β ) 3 + ( β γ ) 3 + ( α γ ) 3 ] = 9 4 = 5 α 6 + β 6 + γ 6 + ( α β ) 3 + ( β γ ) 3 + ( α γ ) 3 = 7 Let\quad f(y)\quad be\quad a\quad function \quad whose\quad roots\quad are\quad cubes\quad of\quad those\quad of\quad { f(x)=x }^{ 3 }-x-1\\ \Rightarrow y={ x }^{ 3 }\Longrightarrow x=\sqrt [ 3 ]{ y } \\ \\ Plugging\quad into\quad f(x),\quad we\quad get\quad y-\sqrt [ 3 ]{ y } -1=0\\ \Rightarrow { y }^{ 3 }-3{ y }^{ 2 }+2y-1=0\quad ,whose\quad roots\quad are\quad { \alpha }^{ 3 }{ ,\beta }^{ 3 },{ \gamma }^{ 3 }\\ \\ Now\quad { \alpha }^{ 3 }{ +\beta }^{ 3 }+{ \gamma }^{ 3 }=3\quad and\quad { (\alpha \beta })^{ 3 }{ +(\beta \gamma ) }^{ 3 }+{ (\alpha \gamma ) }^{ 3 }=2\quad \\ \therefore \quad { \alpha }^{ 6 }+{ \beta }^{ 6 }+{ \gamma }^{ 6 }={ ({ \alpha }^{ 3 }{ +\beta }^{ 3 }+{ \gamma }^{ 3 }) }^{ 2 }-2\left[ { (\alpha \beta })^{ 3 }{ +(\beta \gamma ) }^{ 3 }+{ (\alpha \gamma ) }^{ 3 } \right] =\quad 9-4=5\\ \therefore { \quad \alpha }^{ 6 }+{ \beta }^{ 6 }+{ \gamma }^{ 6 }+{ (\alpha \beta })^{ 3 }{ +(\beta \gamma ) }^{ 3 }+{ (\alpha \gamma ) }^{ 3 }=\boxed { 7 } \\ \\

Moderator note:

Good approach.

However, be careful with the variable substitution when it isn't bijective.

Awesome solution but why is the y function quadratic not cubic.

Puneet Pinku - 5 years ago

Log in to reply

It's a silly mistake. It was actually supposed to be a cubic function ( since f(x) is cubic). I have hence corrected it. Thanks! :)

Aditya Dhawan - 5 years ago

Log in to reply

I think you have missed -1 in f(x) in the firstline itself.

Puneet Pinku - 5 years ago

Very nice solution. Up voted.

Niranjan Khanderia - 2 years, 11 months ago

S t a n d a r d a p p r o a c h : V i e t a s f o r m u l a s . { α + β + γ = 0 α β + β γ + γ α = 1 α β γ = 1 X 2 + Y 2 + Z 2 = ( X + Y + Z ) 2 2 ( X Y + Y Z + Z X ) . . . . . . . . . . ( A ) X 3 + Y 3 + Z 3 = ( X + Y + Z ) { ( X + Y + Z ) 2 3 ( X Y + Y Z + Z X ) } + 3 X Y Z . . . . . . . . . . . ( B ) B y ( A ) α 2 + β 2 + γ 2 = ( α + β + γ ) 2 2 ( α β + β γ + γ α ) = 0 2 ( 1 ) = 2. α 2 β 2 + β 2 γ 2 + γ 2 α 2 = ( α β + β γ + γ α ) 2 2 ( α β γ 2 + α β 2 γ + α 2 β γ ) = ( α β + β γ + γ α ) 2 2 α β γ ( α + β + γ ) = 1 2 1 0 = 1. B y ( B ) α 6 + β 6 + γ 6 = ( α 2 + β 2 + γ 2 ) { ( α 2 + β 2 + γ 2 ) 2 3 ( α 2 β 2 + β 2 γ 2 + γ 2 α 2 ) } + 3 ( α β γ ) 2 = 2 { 4 3 1 } + 3 1 = 5. ( α β ) 3 + ( β γ ) 3 + ( γ α ) 3 = ( α β + β γ + γ α ) { ( α β + β γ + γ α ) 2 3 ( α β γ 2 + α β 2 γ + α 2 β γ ) } + 3 ( α β γ ) 2 = ( α β + β γ + γ α ) { ( α β + β γ + γ α ) 2 3 α β γ ( α + β + γ ) } + 3 ( α β γ ) 2 = 1 ( 1 0 ) + 3 = 2. α 6 + β 6 + γ 6 + ( α β ) 3 + ( β γ ) 3 + ( γ α ) 3 = 5 + 2 = 7. Standard ~approach:~~Vieta's~ formulas.\\ \begin{cases} \color{#3D99F6}{\alpha + \beta + \gamma = 0} \\ \color{#D61F06}{\alpha \beta + \beta \gamma + \gamma \alpha = -1}\\ \color{#BA33D6}{\alpha* \beta * \gamma = 1}\\ \end{cases}\\ \begin{aligned}\\ X^2+Y^2+Z^2 &=(X+Y+Z)^2-2*(XY+YZ+ZX)..........(A)\\ X^3+Y^3+Z^3 &=(X+Y+Z)* \Big \{(X+Y+Z)^2-3*(XY+YZ+ZX) \Big \} +3*XYZ...........(B)\\ ~~~\\~~~~\\ \therefore~By~(A)~~~~~~~\\ ~~~\\ \alpha^2 + \beta^2 + \gamma^2 &=( \alpha + \beta + \gamma )^2 - 2*(\alpha \beta + \beta \gamma + \gamma \alpha)\\ &=0-2*(-1)=2.\\ ~~~~\\ \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 &=(\alpha \beta + \beta \gamma + \gamma \alpha)^2 - 2*(\alpha* \beta * \gamma^2+\alpha* \beta^2 * \gamma+\alpha^2* \beta * \gamma)\\ &=(\alpha \beta + \beta \gamma + \gamma \alpha)^2-2*\alpha* \beta * \gamma*(\alpha + \beta + \gamma)\\ &=1-2*1*0=1.\\ ~~~~\\ ~~~~~\\ \therefore~By~(B)~~~~~~~\\ ~~~\\ \alpha^6 + \beta^6 + \gamma^6 &=( \alpha^2 + \beta^2 + \gamma^2 )* \Big \{( \alpha^2 + \beta^2 + \gamma^2 )^2 - 3*(\alpha^2* \beta^2+\beta^2 *\gamma^2 +\gamma^2*\alpha^2) \Big \}+ 3*(\alpha*\beta*\gamma)^2\\ &=2\{4-3*1\}+3*1=5.\\ ~~~~~~\\ (\alpha \beta)^3 + (\beta \gamma)^3 + (\gamma \alpha)^3 &=(\alpha \beta + \beta \gamma + \gamma \alpha) \Big \{(\alpha \beta + \beta \gamma + \gamma \alpha)^2-3*(\alpha* \beta * \gamma^2+\alpha* \beta^2 * \gamma+\alpha^2* \beta * \gamma) \Big \}+3*(\alpha*\beta*\gamma)^2\\ &=(\alpha \beta + \beta \gamma + \gamma \alpha) \Big \{(\alpha \beta + \beta \gamma + \gamma \alpha)^2-3*\alpha* \beta * \gamma*(\alpha + \beta + \gamma) \Big \}+3*(\alpha*\beta*\gamma)^2\\ &=-1(1-0)+3=2.\\ ~~~~\\~~~~\\ \therefore~~ \alpha^6 + \beta^6 + \gamma^6 + (\alpha \beta)^3 + (\beta \gamma)^3 + (\gamma \alpha)^3 &=5+2 =\Large \color{#D61F06}{7}.\\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...