An algebra problem by ابراهيم فقرا

Algebra Level 4

Let f ( x ) f(x) be a quintic polynomial such that

{ f ( 1 ) = 2 f ( 2 ) = 2 f ( 3 ) = 3 f ( 4 ) = 4 f ( 5 ) = 6 f ( 6 ) = 9 \large \begin{cases} f(1)=2 \\ f(2)=2 \\ f(3)=3 \\ f(4)=4 \\ f(5)=6 \\ f(6)=9 \end{cases}

Determine f ( 7 ) f(7) .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry U
Dec 22, 2018

Since we are given values of f ( x ) f(x) at consecuive points, we can use the Method of Differences here.

x f ( x ) D 1 D 2 D 3 D 4 D 5 1 2 3 4 5 6 2 2 3 4 6 9 0 1 1 2 3 1 0 1 1 1 1 0 2 1 3 \begin{array}{cccccc} x & f(x) & D_1 & D_2 & D_3 & D_4 & D_5 \\ { \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} } & { \begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 6 \\ 9 \end{array} } & { \begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 3 \end{array} } & { \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array} } & { \begin{array}{c} -1 \\ 1 \\ 0 \end{array} } & { \begin{array}{c} 2 \\ -1 \end{array} } & { \begin{array}{c} -3 \end{array} } \end{array}

f ( x ) f(x) is a quintic polynomomial, so ( D_5 ) must be constant. Then, we can continue the table and calculate all differences backwards to get f ( 7 ) f(7) .

x f ( x ) D 1 D 2 D 3 D 4 D 5 1 2 3 4 5 6 7 2 2 3 4 6 9 9 0 1 1 2 3 0 1 0 1 1 3 1 1 0 4 2 1 4 3 3 \begin{array}{cccccc} x & f(x) & D_1 & D_2 & D_3 & D_4 & D_5 \\ { \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} } & { \begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 6 \\ 9 \\ {\color{#D61F06}\boxed{9}} \end{array} } & { \begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ {\color{#D61F06}0} \end{array} } & { \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ {\color{#D61F06}-3} \end{array} } & { \begin{array}{c} -1 \\ 1 \\ 0 \\ {\color{#D61F06}-4} \end{array} } & { \begin{array}{c} 2 \\ -1 \\ {\color{#D61F06}-4} \end{array} } & { \begin{array}{c} -3 \\ {\color{#D61F06}-3} \end{array} } \end{array}

Let f ( x ) = a x 5 + b x 4 + c x 3 + d x 2 + e x + f f(x)=ax^5+bx^4+cx^3+dx^2+ex+f

So f ( 1 ) = a + b + c + d + e + f = 2 f(1)=a+b+c+d+e+f=2

f ( 2 ) = 32 a + 16 b + 8 c + 4 d + 2 e + f = 2 f(2)=32a+16b+8c+4d+2e+f=2

f ( 3 ) = 243 a + 81 b + 27 c + 9 d + 3 e + f = 3 f(3)=243a+81b+27c+9d+3e+f=3

f ( 4 ) = 1024 a + 256 b + 64 c + 16 d + 4 e + f = 4 f(4)=1024a+256b+64c+16d+4e+f=4

f ( 5 ) = 3125 a + 625 b + 125 c + 25 d + 5 e + f = 6 f(5)=3125a+625b+125c+25d+5e+f=6

f ( 6 ) = 7776 a + 1296 b + 216 c + 36 d + 6 e + f = 9 f(6)=7776a+1296b+216c+36d+6e+f=9

If you solve this system of equations above, you will get that

f ( x ) = 3 x 5 + 55 x 4 375 x 3 + 1205 x 2 1722 x + 1080 120 f(x)=\frac{-3*x^5+55*x^4-375*x^3+1205*x^2-1722*x+1080}{120}

f ( 7 ) = 9 f(7)=9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...