n = 1 ∑ ∞ n 2 ( 2 n n ) 1 = B A ζ ( C )
In the equation above, A , B , C are positive integers such that A and B are coprime.
Find A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice approach!
The Taylor Series of arcsin 2 x about 0 is: arcsin 2 x = 2 1 n = 1 ∑ ∞ n 2 ( 2 n n ) 1 ( 2 x ) n
Substitute: x = 2 1 .
Therefore, n = 1 ∑ ∞ n 2 ( 2 n n ) 1 = 1 8 π 2 = 3 1 ζ ( 2 ) .
Here, A = 1 , B = 3 , C = 2 .
A + B + C = 1 + 3 + 2 = 6
The exponent on 2x should be 2n.
Problem Loading...
Note Loading...
Set Loading...
S = n = 1 ∑ ∞ 2 n B ( n , n ) = n = 1 ∑ ∞ ∫ 0 1 2 n ( x ( 1 − x ) ) n − 1 d x = ∫ 0 1 n = 1 ∑ ∞ 2 n ( x ( 1 − x ) ) n − 1 d x = 2 1 ∫ 0 1 ln ( 1 − x ( 1 − x ) ) ( x ( 1 − x ) ) − 1 Using partial fractions S = 2 1 ( ∫ 0 1 x ln ( x 2 − x + 1 ) d x + ∫ 0 1 1 − x ln ( x 2 − x + 1 ) d x ) In the second integral use ∫ b a f ( x ) d x = ∫ b a f ( a + b − x ) d x to get both integrals are the same. We have S = ∫ 0 1 x ln ( x 2 − x + 1 ) d x = ∫ 0 1 x ln ( x + ω ) + x ln ( x + ω 2 ) d x Lets try to finding the indefinite integral first ∫ x ln ( x + ω ) + x ln ( x + ω 2 ) d x = ∫ x ln ( ω ) + ln ( 1 + x ω 2 ) + x ln ( ω 2 ) + ln ( 1 + x ω ) d x = ∫ x ω 2 ln ( 1 + x ω 2 ) ω 2 d x + ∫ x ω ln ( 1 + x ω ) ω d x = L i 2 ( − x ω 2 ) + L i 2 ( − x ω ) = n = 1 ∑ ∞ n 2 ( − x ) n ( ω n + ω 2 n ) SInce ω n + ω 2 n = { 2 , 3 ∣ n − 1 , o t h e r w i s e so we can wirte this as n = 1 ∑ ∞ n 2 − ( − x ) n + 3 n = 1 ∑ ∞ ( 3 n ) 2 ( − x ) 3 n = − L i 2 ( − x ) + 3 1 L i 2 ( − x 3 ) Note, L i s ( − 1 ) = ( 2 1 − s − 1 ) L i s ( 1 ) = ζ ( s ) ( 2 1 − s − 1 ) S = − L i 2 ( − 1 ) + 3 1 L i 2 ( − 1 ) = 2 1 ζ ( 2 ) − 6 1 ζ ( 2 ) = 3 1 ζ ( 2 ) 1 + 3 + 2 = 6