It is simpler than it looks!

Calculus Level 5

n = 1 1 n 2 ( 2 n n ) = A B ζ ( C ) \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }\left( \begin{matrix} 2n \\ n \end{matrix} \right) } } =\frac { A }{ B } \zeta \left( C \right)

In the equation above, A , B , C A,B,C are positive integers such that A A and B B are coprime.

Find A + B + C . A+B+C.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Mar 19, 2016

S = n = 1 B ( n , n ) 2 n = n = 1 0 1 ( x ( 1 x ) ) n 1 2 n d x = 0 1 n = 1 ( x ( 1 x ) ) n 1 2 n d x = 1 2 0 1 ln ( 1 x ( 1 x ) ) ( x ( 1 x ) ) 1 S=\sum_{n=1}^\infty \dfrac{B(n,n)}{2n}=\sum_{n=1}^\infty \int_0^1 \dfrac{(x(1-x))^{n-1}}{2n} dx\\=\int_0^1\sum_{n=1}^\infty \dfrac{(x(1-x))^{n-1}}{2n} dx=\dfrac{1}{2}\int_0^1 \ln(1-x(1-x))(x(1-x))^{-1} Using partial fractions S = 1 2 ( 0 1 ln ( x 2 x + 1 ) x d x + 0 1 ln ( x 2 x + 1 ) 1 x d x ) S=\dfrac{1}{2}\left(\int_0^1 \dfrac{\ln(x^2-x+1)}{x}dx+\int_0^1 \dfrac{\ln(x^2-x+1)}{1-x}dx\right) In the second integral use b a f ( x ) d x = b a f ( a + b x ) d x \int_b^a f(x) dx=\int_b^a f(a+b-x)dx to get both integrals are the same. We have S = 0 1 ln ( x 2 x + 1 ) x d x = 0 1 ln ( x + ω ) x + ln ( x + ω 2 ) x d x S=\int_0^1 \dfrac{\ln(x^2-x+1)}{x}dx=\int_0^1 \dfrac{\ln(x+\omega)}{x}+\dfrac{\ln(x+\omega^2)}{x}dx Lets try to finding the indefinite integral first ln ( x + ω ) x + ln ( x + ω 2 ) x d x = ln ( ω ) + ln ( 1 + x ω 2 ) x + ln ( ω 2 ) + ln ( 1 + x ω ) x d x = ln ( 1 + x ω 2 ) x ω 2 ω 2 d x + ln ( 1 + x ω ) x ω ω d x = L i 2 ( x ω 2 ) + L i 2 ( x ω ) = n = 1 ( x ) n ( ω n + ω 2 n ) n 2 \int \dfrac{\ln(x+\omega)}{x}+\dfrac{\ln(x+\omega^2)}{x}dx=\int \dfrac{\ln(\omega)+\ln(1+x\omega^2)}{x}+\dfrac{\ln(\omega^2)+\ln(1+x\omega)}{x}dx\\=\int \dfrac{\ln(1+x\omega^2)}{x\omega^2} \omega^2dx+\int \dfrac{\ln(1+x\omega)}{x\omega}\omega dx=Li_2(-x\omega^2)+Li_2(-x\omega)\\=\sum_{n=1}^\infty \dfrac{(-x)^n(\omega^n+\omega^{2n})}{n^2} SInce ω n + ω 2 n = { 2 , 3 n 1 , o t h e r w i s e \omega^n+\omega^{2n}=\begin{cases} 2, 3|n\\ -1, otherwise\end{cases} so we can wirte this as n = 1 ( x ) n n 2 + 3 n = 1 ( x ) 3 n ( 3 n ) 2 = L i 2 ( x ) + 1 3 L i 2 ( x 3 ) \sum_{n=1}^\infty \dfrac{-(-x)^n}{n^2}+3\sum_{n=1}^\infty \dfrac{(-x)^{3n}}{(3n)^2}=-Li_2(-x)+\dfrac{1}{3}Li_2(-x^3) Note, L i s ( 1 ) = ( 2 1 s 1 ) L i s ( 1 ) = ζ ( s ) ( 2 1 s 1 ) Li_s(-1)=(2^{1-s}-1)Li_s(1)=\zeta(s)(2^{1-s}-1) S = L i 2 ( 1 ) + 1 3 L i 2 ( 1 ) = 1 2 ζ ( 2 ) 1 6 ζ ( 2 ) = 1 3 ζ ( 2 ) S=-Li_2(-1)+\dfrac{1}{3}Li_2(-1)=\dfrac{1}{2}\zeta(2)-\dfrac{1}{6}\zeta(2)=\dfrac{1}{3}\zeta(2) 1 + 3 + 2 = 6 1+3+2=\boxed{6}

Nice approach!

Aditya Kumar - 5 years, 2 months ago
Aditya Kumar
Mar 18, 2016

The Taylor Series of arcsin 2 x \arcsin ^{ 2 }{ x } about 0 is: arcsin 2 x = 1 2 n = 1 1 n 2 ( 2 n n ) ( 2 x ) n \arcsin ^{ 2 }{ x } =\frac { 1 }{ 2 } \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }\left( \begin{matrix} 2n \\ n \end{matrix} \right) } } { \left( 2x \right) }^{ n }

Substitute: x = 1 2 x=\frac{1}{2} .

Therefore, n = 1 1 n 2 ( 2 n n ) = π 2 18 = 1 3 ζ ( 2 ) \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }\left( \begin{matrix} 2n \\ n \end{matrix} \right) } } = \frac{\pi^2}{18}=\frac { 1 }{ 3 } \zeta \left( 2 \right) .

Here, A = 1 , B = 3 , C = 2 A=1, \ B=3, \ C=2 .

A + B + C = 1 + 3 + 2 = 6 \boxed{A+B+C=1+3+2=6}

The exponent on 2x should be 2n.

Joe Mansley - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...