It isn't an ordinary one!

Calculus Level 5

n = e π n 2 = π A / B Γ ( C D ) \large \sum _{ n=-\infty }^{ \infty }{ { e }^{ -{ \pi n }^{ 2 } } } =\dfrac { { \pi }^{A / B } }{ \Gamma \left( \frac { C }{ D } \right) }

The equation above holds true for positive integers A , B , C A,B,C and D D with gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 . Find A + B + C + D A+B+C+D .

Notations :


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Jun 26, 2016

Consider the function: φ ( x ) = n = x n 2 \varphi \left( x \right) =\sum _{ n=-\infty }^{ \infty }{ { x }^{ { n }^{ 2 } } }

We need to find: φ ( e π ) = π 1 4 Γ ( 3 4 ) \displaystyle \varphi(e^{-\pi})=\frac{\pi^{\frac{1}{4}}}{\Gamma \left(\frac{3}{4} \right)}

We take the following integral: I ( a ) = 0 π 2 1 1 a 2 sin 2 θ d θ = π 2 φ 2 ( q ) = π 2 F 1 ( 1 2 , 1 2 ; 1 ; a 2 ) 2 \displaystyle I(a)= \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1-a^2\sin^2\theta}}d\theta = \frac{\pi}{2}\varphi^2(q)=\frac{\pi_2F_1 \left(\frac{1}{2},\frac{1}{2};1;a^2 \right)}{2}

Here q = e π I I \displaystyle q=e^{-\pi \frac{I'}{I}} .

I'm working on the proof of this Identity

On inserting appropriate values, we get: φ 2 ( e π ) = 2 F 1 ( 1 2 , 1 2 ; 1 ; 1 2 ) \displaystyle \varphi^2(e^{-\pi})=_2F_1 \left(\frac{1}{2},\frac{1}{2};1;\frac{1}{2} \right)

We use the identity: 2 F 1 ( a , b ; 1 2 ( a + b + 1 ) ; 1 2 ) = π Γ [ 1 2 ( a + b + 1 ) ] Γ ( a + 1 2 ) Γ ( b + 1 2 ) \displaystyle _2F_1 \left( a,b;\frac{1}{2}(a+b+1);\frac{1}{2}\right)= \frac{\sqrt{\pi} \Gamma \left[ \frac{1}{2}(a+b+1) \right]}{\Gamma \left( \frac{a+1}{2}\right)\Gamma \left( \frac{b+1}{2}\right)}

I'm working on the proof of this Identity

Hence, φ ( e π ) = π 1 4 Γ ( 3 4 ) \boxed{\displaystyle \varphi(e^{-\pi})=\frac{\pi^{\frac{1}{4}}}{\Gamma \left(\frac{3}{4} \right)}}

Adapted from the original proof of φ ( e π ) \varphi \left( { -e }^{ -\pi } \right) by Ramanujan .

Please provide appropriate proofs of some identities used here.

Is there a general name for that summation function which is denoted as phi(x) and by the way F_1 denotes hypergeometric series, isn't it?

Syed Shahabudeen - 4 years, 11 months ago

Log in to reply

Yes that is hypergeometric function. For the function(pi(x)) there's Jacobi Theta Function.

Aditya Kumar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...