It isn't what it looks!

Calculus Level 5

0 2 π x 2 ( ln 2 sin x 2 ) 2 d x = A π C B \displaystyle \int_0^{2\pi} x^2\left( \ln \left| 2 \sin\dfrac{x}{2} \right| \right)^{2} \, dx= \dfrac{A\pi^C}{B}

If the equation above holds true for integers A , B A,B and C C with A , B A,B coprime positive integers, find A + B + C A+B+C .


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 7, 2016

If we consider the function F ( β , ν ) = 2 ν 1 0 π e i β y sin ν 1 y d y = π e 1 2 i β π ν B ( ν + β + 1 2 , ν β + 1 2 ) = π e 1 2 i β π Γ ( ν ) Γ ( ν + β + 1 2 ) Γ ( ν β + 1 2 ) F(\beta,\nu) \; =\; 2^{\nu-1} \int_0^\pi e^{i\beta y} \sin^{\nu-1}y\,dy \; = \; \frac{\pi e^{\frac12i\beta \pi}}{\nu B\big(\frac{\nu+\beta+1}{2},\frac{\nu-\beta+1}{2}\big)} \; = \; \frac{\pi e^{\frac12i\beta \pi}\Gamma(\nu)}{\Gamma\big(\frac{\nu+\beta+1}{2}\big)\Gamma\big(\frac{\nu-\beta+1}{2}\big)} then G ( ν ) = 2 F β 2 ( 0 , ν ) = 2 ν 1 0 π y 2 sin ν 1 y d y = π Γ ( ν ) [ π 2 + 2 ψ ( ν + 1 2 ) ] 4 Γ ( ν + 1 2 ) 2 G(\nu) \; = \; \frac{\partial^2F}{\partial \beta^2}(0,\nu) \; = \; -2^{\nu-1}\int_0^\pi y^2 \sin^{\nu-1}y\,dy \;=\;- \frac{\pi \Gamma(\nu)\big[\pi^2 + 2\psi'\big(\frac{\nu+1}{2}\big)\big]}{4 \Gamma\big(\frac{\nu+1}{2}\big)^2} and hence 0 2 π x 2 ( ln 2 sin 1 2 x ) 2 d x = 8 0 π y 2 ( ln 2 sin y ) 2 d y = 8 G ( 1 ) = 13 45 π 5 \int_0^{2\pi} x^2 \big(\ln |2\sin\tfrac12x|\big)^2\,dx \; = \; 8\int_0^\pi y^2 \big(\ln |2\sin y|\big)^2\,dy \; = \; -8G''(1) \; = \; \frac{13}{45}\pi^5 making the answer 13 + 45 + 5 = 63 13 + 45 + 5 = \boxed{63} .

Inspiring solution ! (+1) . In other words it's the Log-Sine Integral L 5 2 L_{5}^{2}

Aditya Narayan Sharma - 5 years, 1 month ago

Log in to reply

It is L s 5 ( 2 ) ( 2 π ) -Ls^{(2)}_5(2\pi) ; don't forget the minus sign!

Mark Hennings - 5 years, 1 month ago

Log in to reply

Yes absolutely !! I missed it !

Aditya Narayan Sharma - 5 years, 1 month ago

@Aditya Narayan Sharma Can you please provide me closed form for the value of L 6 ( 3 ) ( π ) \displaystyle L_6^{(3)}(\pi)

Rohan Shinde - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...