An algebra problem by MaFiA maNiAc

Algebra Level 3

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 200 7 2 ) = ? \large \left( 1 - \dfrac1{2^2} \right)\left( 1 - \dfrac1{3^2} \right)\left( 1 - \dfrac1{4^2} \right)\cdots \left( 1 - \dfrac1{2007^2} \right) = \, ?

1004 2007 \frac{1004}{2007} 2007 2008 \frac{2007}{2008} 1 1 2008 2007 \frac{2008}{2007}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P = ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) . . . ( 1 1 200 7 2 ) = n = 2 2007 ( 1 1 n 2 ) = n = 2 2007 n 2 1 n 2 = n = 2 2007 ( n 1 ) ( n + 1 ) n 2 = 2006 ! 2008 ! 2 ( 2007 ! ) 2 = 1004 2007 \begin{aligned} P&= \left(1-\frac 1 {2^2} \right) \left(1-\frac 1 {3^2} \right) \left(1-\frac 1 {4^2} \right)... \left(1-\frac 1 {2007^2} \right) \\ & =\prod_{n=2}^{2007} \left(1-\frac 1 {n^2} \right) \\ & =\prod_{n=2}^{2007} \frac {n^2 - 1} {n^2} \\ & =\prod_{n=2}^{2007} \frac {(n- 1) (n+1)} {n^2} \\ & = \frac {2006! \cdot 2008!}{2 \cdot (2007!)^2} \\ & = \boxed {\dfrac {1004}{2007}} \end{aligned}

Suresh Jh
May 6, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...