It looks indeed simple however

Calculus Level 3

n = 0 ( 1 ) n 4 n + 3 \sum_{n=0}^{\infty}\dfrac{(-1)^n}{4n+3} If the closed form of the above series can be expressed as π + a ln ( a b ) c a \dfrac{\pi + a\ln(\sqrt a-b)}{c\sqrt a} where, a , b , c a,b,c are positive integers and a a is a prime. Find the value if a + b + c a+b+c .


Source : Romanian Mathematical Magazine . The problem was proposed by Ekpo Samuel .


For more problems you may wish to visit RMM .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the following Maclaurin series:

1 2 ln ( 1 + x 1 x ) = x + x 3 3 + x 5 5 + x 7 7 + x 2 ln ( 1 + x 1 x ) = x 2 + x 4 3 + x 6 5 + x 8 7 + i x 2 ln ( 1 + i x 1 i x ) = x 2 + x 4 3 x 6 5 + x 8 7 + x 2 ln ( 1 + x 1 x ) + i x 2 ln ( 1 + i x 1 i x ) = 2 ( x 4 3 + x 8 7 + x 12 11 + x 16 15 + ) x 4 ( ln ( 1 + x 1 x ) + i ln ( 1 + i x 1 i x ) ) = x 4 3 + x 8 7 + x 12 11 + x 16 15 + Put x = i 1 2 i 1 2 4 ( ln ( 1 + i 1 2 1 i 1 2 ) + i ln ( 1 + i 3 2 1 i 3 2 ) ) = 1 3 + 1 7 1 11 + 1 15 + \begin{aligned} \frac 12 \ln \left(\frac {1+x}{1-x} \right) & = x + \frac {x^3}3 + \frac {x^5}5 + \frac {x^7}7 + \cdots \\ \frac x2 \ln \left(\frac {1+x}{1-x} \right) & = x^2 + \frac {x^4}3 + \frac {x^6}5 + \frac {x^8}7 + \cdots \\ \frac {ix}2 \ln \left(\frac {1+ix}{1-ix} \right) & = - x^2 + \frac {x^4}3 - \frac {x^6}5 + \frac {x^8}7 + \cdots \\ \frac x2 \ln \left(\frac {1+x}{1-x} \right) + \frac {ix}2 \ln \left(\frac {1+ix}{1-ix} \right) & = 2 \left(\frac {x^4}3 + \frac {x^8}7 + \frac {x^{12}}{11} + \frac {x^{16}}{15} + \cdots \right) \\ \frac x4 \left(\ln \left(\frac {1+x}{1-x} \right) + i \ln \left(\frac {1+ix}{1-ix} \right) \right) & = \frac {x^4}3 + \frac {x^8}7 + \frac {x^{12}}{11} + \frac {x^{16}}{15} + \cdots & \small \color{#3D99F6} \text{Put }x = i^\frac 12 \\ \frac {i^\frac 12}4 \left(\ln \left(\frac {1+i^\frac 12}{1-i^\frac 12} \right) + i \ln \left(\frac {1+i^\frac 32}{1-i^\frac 32} \right) \right) & = - \frac 13 + \frac 17 - \frac 1{11} + \frac 1{15} + \cdots \end{aligned}

Therefore, we have:

n = 0 ( 1 ) n ( 4 n + 3 ) = i 1 2 4 ( ln ( 1 + i 1 2 1 i 1 2 ) + i ln ( 1 + i 3 2 1 i 3 2 ) ) = e π 4 i 4 ( ln ( 1 + e π 4 i 1 e π 4 i ) + i ln ( 1 + e 3 π 4 i 1 e 3 π 4 i ) ) = e π 4 i 4 ( ln ( 1 + 1 + i 2 1 1 + i 2 ) + i ln ( 1 1 i 2 1 + 1 i 2 ) ) = e π 4 i 4 ( ln ( 2 + 1 + i 2 1 i ) + i ln ( 2 1 + i 2 + 1 i ) ) = ( 1 + i ) ( ln i ln ( 2 1 ) + i ( ln ( 2 1 ) + ln i ) ) 4 2 = π + 2 ln ( 2 1 ) 4 2 \begin{aligned} \sum_{n=0}^\infty \frac {(-1)^n}{(4n+3)} & = - \frac {i^\frac 12}4 \left(\ln \left(\frac {1+i^\frac 12}{1-i^\frac 12} \right) + i \ln \left(\frac {1+i^\frac 32}{1-i^\frac 32} \right) \right) = - \frac {e^{\frac \pi 4i}}4 \left(\ln \left(\frac {1+e^{\frac \pi 4i}}{1-e^{\frac \pi 4i}} \right) + i \ln \left(\frac {1+e^{\frac {3\pi}4i}}{1-e^{\frac {3\pi}4i}} \right) \right) \\ & = -\frac {e^{\frac \pi 4i}}4 \left(\ln \left(\frac {1+ \frac {1+i}{\sqrt 2}}{1- \frac {1+i}{\sqrt 2}} \right) + i \ln \left(\frac {1- \frac {1-i}{\sqrt 2}}{1+\frac {1-i}{\sqrt 2}} \right) \right) = - \frac {e^{\frac \pi 4i}}4 \left(\ln \left(\frac {\sqrt 2+1+i}{\sqrt 2-1-i} \right) + i \ln \left(\frac {\sqrt 2-1+i}{\sqrt 2+1-i} \right) \right) \\ & = -\frac {(1+i)\left(\ln i - \ln (\sqrt 2-1) + i (\ln (\sqrt 2 - 1) + \ln i) \right)}{4\sqrt 2} \\ & = \frac {\pi + 2\ln(\sqrt 2-1)}{4\sqrt 2} \end{aligned}

Therefore, a + b + c = 2 + 1 + 4 = 7 a+b+c = 2+1+4 = \boxed 7 .

I must admire the way you solve sir. I was informed that this sum was first addressed by Euler and also it is the starting point of the Dirichlet L function. Moreover, Euler and Ramanujan both had same solution to this problem. :)

Naren Bhandari - 2 years, 7 months ago

Log in to reply

Yet to finish the working.

Chew-Seong Cheong - 2 years, 7 months ago

Log in to reply

Yes, Sir, now it's completed.

Naren Bhandari - 2 years, 7 months ago
Naren Bhandari
Oct 31, 2018

My 1st approach Let's make some observation for the entries of n = 0 , 1 , 2 , 3 n=0,1,2,3\cdots . Φ = n = 0 ( 1 ) n 4 n + 1 = 1 3 1 7 + 1 11 1 15 + 1 19 1 23 + \Phi=\sum_{n=0}^{\infty} \dfrac{(-1)^n}{4n+1} = \dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{11}-\dfrac{1}{15}+ \dfrac{1}{19}-\dfrac{1}{23} +\cdots Here now I will define two sums Φ 1 \Phi_1 and Φ 2 \Phi_2 such that Φ = Φ 1 + Φ 2 \Phi= \Phi_1+\Phi_2 . So let's recall for x < 1 |x|< 1 we have Φ 1 = 2 j = 0 x 2 j + 1 2 j + 1 = ln ( 1 + x 1 x ) \Phi_1=2\sum_{j=0}^{\infty} \dfrac{x^{2j+1}}{2j+1} = \ln\left(\dfrac{1+x}{1-x}\right) Now let me set x = i 2 e i π 4 x = i^2e^{i\frac{\pi}{4}} and plug it to Φ 1 \Phi_1 . we can see Φ 1 \Re\Phi_1 ln ( 1 e i π 4 1 + e i π 4 ) = 2 ( 1 + 1 3 + 1 5 1 7 1 9 + ) ln ( 2 1 i 2 + 1 + i ) = 2 ( 1 + 1 3 + 1 5 1 7 1 9 + ) Φ 1 = 1 2 ln ( 2 1 ) \begin{aligned} \Re \ln\left(\dfrac{1-e^{i\frac{\pi}{4}}}{1+e^{i\frac{\pi}{4}}}\right)&= \sqrt 2\left(-1 +\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}+\cdots \right)\\\Re\ln\left(\dfrac{\sqrt 2 -1 -i}{\sqrt 2 +1 +i}\right)& =\sqrt 2\left( -1 +\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}+\cdots\right )\\ \Phi_1& = \dfrac{1}{\sqrt 2} \ln(\sqrt 2-1)\end{aligned} One the similar fashion set x = i 2 e i 5 π 4 x=i^2 e^{i\frac{5\pi}{4}} for the next series namely Φ 2 \Phi_2 and we can observe that Φ 2 \Im\Phi_2 . ln ( 1 + e i π 4 1 e i π 4 ) = 2 ( 1 + 1 3 1 5 1 7 + 1 9 + ) ln ( 2 1 i 2 + 1 + i ) = 2 ( 1 + 1 3 1 5 1 7 + 1 9 + ) Φ 1 = π 2 2 \begin{aligned} \Im \ln\left(\dfrac{1+e^{i\frac{\pi}{4}}}{1-e^{i\frac{\pi}{4}}}\right)& =\sqrt 2\left(1 +\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}+\cdots \right)\\\Im\ln\left(\dfrac{\sqrt 2 -1 -i}{\sqrt 2 +1 +i}\right)& =\sqrt 2\left( 1 +\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}+\cdots\right )\\ \Phi_1& = \dfrac{\pi}{2 \sqrt 2}\end{aligned} Now adding Φ 1 + Φ 2 = 2 ( 1 3 1 7 + 1 11 1 15 + 1 19 1 23 + ) n = 0 ( 1 ) n 4 n + 3 = 1 2 ( Φ 1 + Φ 2 ) = π + 2 ln ( 2 1 ) 4 2 \begin{aligned} \Phi_1+\Phi_2& = 2\left( \dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{11}-\dfrac{1}{15}+ \dfrac{1}{19}-\dfrac{1}{23} +\cdots \right)\\ \sum_{n=0}^{\infty}\dfrac{(-1)^n}{4n+3} & = \dfrac{1}{2}(\Phi_1+\Phi_2)= \dfrac{\pi+2\ln(\sqrt 2-1)}{4\sqrt 2}\end{aligned}


2nd approch

Let sum be Φ \Phi n = 0 ( 1 ) n 4 n + 3 = n = 0 0 1 x 4 n + 2 d x = 0 1 x 2 1 + x 4 d x \sum_{n=0}^{\infty}\dfrac{(-1)^n}{4n+3} = \sum_{n=0}^{\infty} \int_{0}^{1} x^{4n+2}\,dx = \int_{0}^{1}\dfrac{x^2}{1+x^4}\,dx Since x 2 1 + x 4 d x = 1 2 2 tan 1 ( x 2 + 1 2 x ) + 1 4 2 log ( x 2 + 1 2 x x 2 + 1 + 2 x ) + C \int\dfrac{x^2}{1+x^4}\,dx = \dfrac{1}{2\sqrt 2}\tan^{-1}\left(\dfrac{x^2+1}{\sqrt 2 x}\right)+\dfrac{1}{4\sqrt2}\log\left(\dfrac{x^2+1-\sqrt 2 x}{x^2+1+\sqrt 2 x}\right)+ C setting the limit we obtain Φ = π + 2 ln ( 2 1 ) 4 2 \Phi =\dfrac{\pi +2\ln(\sqrt 2-1)}{4\sqrt 2}

Note: x 2 1 + x 4 d x = 1 2 ( x 2 + 1 1 + x 4 + x 2 1 1 + x 4 ) d x = 1 2 ( 1 + 1 x 2 x 2 + 1 x 2 + 1 1 x 2 x 2 + 1 x 2 ) d x = 1 2 ( 1 + 1 x 2 ( x 1 x ) 2 + 2 + 1 1 x 2 ( x + 1 x ) 2 2 ) d x \begin{aligned} \int \dfrac{x^2}{1+x^4}\,dx & =\dfrac{1}{2}\int\left(\dfrac{x^2+1}{1+x^4}+ \dfrac{x^2-1}{1+x^4} \right)\,dx\\& = \dfrac{1}{2}\int\left(\dfrac{1+\frac{1}{x^2} }{x^2+\frac{1}{x^2} }+ \dfrac{1-\frac{1}{x^2} }{x^2+\frac{1}{x^2} } \right)\,dx \\ & =\dfrac{1}{2}\int\left(\dfrac{1+\frac{1}{x^2} }{\,(x-\frac{1}{x})^2 +2 }+ \dfrac{1-\frac{1}{x^2} }{{\,(x+\frac{1}{x})^2 -2} } \right)\,dx\end{aligned} Substitute x 1 x = t 1 + 1 x 2 = d t x -\frac{1}{x} = t \implies 1+\frac{1}{x^2}=\,dt and x + 1 x = u 1 1 x 2 = d u x +\frac{1}{x} = u\implies 1-\frac{1}{x^2}=\,du . We have then x 2 1 + x 4 = 1 2 ( d t t 2 + 2 + d u u 2 2 ) = ( 1 2 2 tan 1 ( x 2 1 2 x ) + 1 4 2 ln [ x 2 + 1 2 x x 2 + 1 + 2 x ] ) + C \begin{aligned} \int \dfrac{x^2}{1+x^4} & = \dfrac{1}{2}\int \left( \dfrac{\,dt}{ t^2 +2} +\dfrac{\,du}{u^2-2}\right) \\& = \left(\dfrac{1}{2\sqrt 2}\tan^{-1} \left(\dfrac{x^2-1}{2\sqrt x}\right)+\dfrac{1}{4\sqrt 2}\ln\left[\dfrac{x^2+1-\sqrt 2 x}{x^2+1+\sqrt 2 x}\right]\right)+C \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...