It looks like e x e^x

Calculus Level 3

If the value of n = 0 n 2 x n n ! \displaystyle\sum_{n=0}^{\infty}\frac{n^2x^n}{n!} is ( a x 2 + b x + c ) e x (ax^2+bx+c)e^x , where a a , b b , and c c are constants, enter the value of 123 a + 456 b + 789 c 123a+456b+789c .

Additional formula:

  • e x = n = 0 x n n ! \displaystyle e^x=\sum_{n=0}^\infty\frac{x^n}{n!}


The answer is 579.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenny Lau
Jul 24, 2015
  • n = 0 n 2 x n n ! \displaystyle \color{#D61F06}{\sum_{n=0}^{\infty}\frac{n^2x^n}{n!}}
  • = 0 2 x 0 0 ! + n = 1 n 2 x n n ! = \displaystyle \color{#EC7300}{\frac{0^2x^0}{0!}} + \color{#D61F06}{\sum_{n=1}^{\infty}\frac{n^2x^n}{n!}}
  • = 0 + n = 1 n 2 x n n ! = \displaystyle \color{#EC7300}0 + \color{#D61F06}{\sum_{n=1}^{\infty}\frac{n^2x^n}{n!}}
  • = 0 + n = 1 n x n ( n 1 ) ! = \displaystyle \color{#EC7300}0 +\color{#D61F06}{\sum_{n=1}^{\infty}\frac{nx^n}{(n-1)!}}
  • = 0 + n = 0 ( n + 1 ) x n + 1 n ! = \displaystyle \color{#EC7300}0 + \color{#D61F06}{\sum_{n=0}^{\infty}\frac{(n+1)x^{n+1}}{n!}}
  • = 0 + x n = 0 ( n + 1 ) x n n ! = \displaystyle \color{#EC7300}0 + \color{#D61F06}{x\sum_{n=0}^{\infty}\frac{(n+1)x^n}{n!}}
  • = 0 + x n = 0 n x n n ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#3D99F6}{x\sum_{n=0}^{\infty}\frac{nx^n}{n!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + x 0 x 0 0 ! + x n = 1 n x n n ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#20A900}{x\frac{0x^0}{0!}} + \color{#3D99F6}{x\sum_{n=1}^{\infty}\frac{nx^n}{n!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + 0 + x n = 1 n x n n ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#20A900}0 + \color{#3D99F6}{x\sum_{n=1}^{\infty}\frac{nx^n}{n!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + 0 + x n = 1 x n ( n 1 ) ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#20A900}0 + \color{#3D99F6}{x\sum_{n=1}^{\infty}\frac{x^n}{(n-1)!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + 0 + x n = 0 x n + 1 n ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#20A900}0 + \color{#3D99F6}{x\sum_{n=0}^{\infty}\frac{x^{n+1}}{n!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + 0 + x 2 n = 0 x n n ! + x n = 0 x n n ! = \displaystyle \color{#EC7300}0 + \color{#20A900}0 + \color{#3D99F6}{x^2\sum_{n=0}^{\infty}\frac{x^n}{n!}} + \color{#69047E}{x\sum_{n=0}^{\infty}\frac{x^n}{n!}}
  • = 0 + 0 + x 2 e x + x e x = \displaystyle \color{#EC7300}0 + \color{#20A900}0 + \color{#3D99F6}{x^2e^x} + \color{#69047E}{xe^x}
  • = ( x 2 + x ) e x = \displaystyle (\color{#3D99F6}{x^2}+\color{#69047E}x)e^x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...