Is it simple?

Calculus Level 4

If f ( x ) = 1 x log t 1 + t d t \displaystyle f(x) = \int\limits_1^x\frac{\log{t}}{1+t}dt find the value of f ( e ) + f ( e 1 ) f(e)+f(e^{-1})


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishal Sharma
Apr 3, 2014

s i n c e since

f ( x ) f(x) = 1 x l o g ( t ) t + 1 d t \int _{ 1 }^{ x }{ \frac { log(t) }{ t+1 } } dt

t h e r e f o r e , therefore,

f ( 1 x ) f(\frac { 1 }{ x } ) = 1 1 x l o g ( t ) t + 1 d t \int _{ 1 }^{ \frac { 1 }{ x } }{ \frac { log(t) }{ t+1 } } dt

n o w w e w i l l m a k e a s u b s t i t u t i o n p u t t i n g t = 1 z now\ we\ will\ make\ a\ substitution\ putting\ t\ =\ \frac { 1 }{ z }

h e n c e d t = 1 z 2 d z hence\ dt\ =-\frac { 1 }{ { z }^{ 2 } } dz

a n d and f ( 1 x ) f(\frac { 1 }{ x } ) t r a n s f o r m s transforms t o to 1 x l o g ( 1 z ) 1 z + 1 ( 1 z 2 d z ) \int _{ 1 }^{ x }{ \frac { log(\frac { 1 }{ z } ) }{ \frac { 1 }{ z } +1 } } (-\frac { 1 }{ { z }^{ 2 } } dz) = 1 x l o g ( z ) ( z + 1 ) z d z =\ \int _{ 1 }^{ x }{ \frac { log(z) }{ (z+1)z } } dz

a n d t h e n r e p l a c e z b y t , and\ then\ replace\ z\ by\ t,

h e n c e F ( x ) = f ( x ) + f ( 1 x ) hence\ F(x)\ =\ f(x)+f(\frac { 1 }{ x } ) = 1 x [ l o g ( t ) t + 1 d t + l o g ( t ) ( t + 1 ) t ] d t = 1 x l o g ( t ) t d t \\ \int _{ 1 }^{ x }{ [\frac { log(t) }{ t+1 } dt } +\frac { log(t) }{ (t+1)t } ]dt\ =\ \int _{ 1 }^{ x }{ \frac { log(t) }{ t } } dt h e n c e F ( e ) = 1 e l o g t t d t . \\hence\ F(e)\ =\ \int _{ 1 }^{ e }{ \frac { logt }{ t } } dt.

t a k e l o g ( t ) take\ log(t) = u a n d s o l v e t h e i n t e g r a l e a s i l y t o o b t a i n F ( e ) = 0.5 'u'\ and\ solve\ the\ integral\ easily\ to\ obtain\ F(e)\ =\ 0.5

Such a nice solution!

Carlos David Nexans - 6 years, 10 months ago

Log in to reply

Thank you very much :)

Vishal Sharma - 6 years, 7 months ago
Chew-Seong Cheong
Sep 13, 2018

S = f ( e ) + f ( e 1 ) = 1 e log t 1 + t d t + 1 1 e log t 1 + t d t Let u = 1 t d u = d t t 2 = 1 e log t 1 + t d t + 1 e log 1 u u 2 ( 1 + 1 u ) d u = 1 e log t 1 + t d t + 1 e log u u ( u + 1 ) d u Replace u with t . = 1 e ( log t 1 + t + log t t ( 1 + t ) ) d t = 1 e t log t + log t t ( 1 + t ) d t = 1 e log t t d t By integration by parts = log 2 t 1 e 1 e log t t d t Note that 0 e log t t d t = S = log 2 e log 2 1 2 = 1 2 = 0.5 \begin{aligned} S & = f(e) + f(e^{-1}) \\ & = \int_1^e \frac {\log t}{1+t} dt + \color{#3D99F6} \int_1^\frac 1e \frac {\log t}{1+t}dt & \small \color{#3D99F6} \text{Let }u = \frac 1t \implies du = - \frac {dt}{t^2} \\ & = \int_1^e \frac {\log t}{1+t} dt + \color{#3D99F6} \int_1^e \frac {-\log \frac 1u}{u^2\left(1+\frac 1u\right)}du \\ & = \int_1^e \frac {\log t}{1+t} dt + \color{#3D99F6} \int_1^e \frac {\log u}{u(u+1)}du & \small \color{#3D99F6} \text{Replace } u \text{ with }t. \\ & = \int_1^e \left(\frac {\log t}{1+t} + \frac {\log t}{t(1+t)} \right) dt \\ & = \int_1^e \frac {t\log t + \log t}{t(1+t)} dt \\ & = \int_1^e \frac {\log t}t dt & \small \color{#3D99F6} \text{By integration by parts} \\ & = \log^2 t \bigg|_1^e - \color{#3D99F6} \int_1^e \frac {\log t}t dt & \small \color{#3D99F6} \text{Note that } \int_0^e \frac {\log t}t dt = S \\ & = \frac {\log^2 e - \log^2 1}2 = \frac 12 = \boxed {0.5} \end{aligned}

@Chew-Seong Cheong the lower limit for the first few expressions should be 1, not 0.

Chan Lye Lee - 2 years, 9 months ago

Log in to reply

Thanks. I have amended it.

Chew-Seong Cheong - 2 years, 8 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...