If f ( x ) = 1 ∫ x 1 + t lo g t d t find the value of f ( e ) + f ( e − 1 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Such a nice solution!
S = f ( e ) + f ( e − 1 ) = ∫ 1 e 1 + t lo g t d t + ∫ 1 e 1 1 + t lo g t d t = ∫ 1 e 1 + t lo g t d t + ∫ 1 e u 2 ( 1 + u 1 ) − lo g u 1 d u = ∫ 1 e 1 + t lo g t d t + ∫ 1 e u ( u + 1 ) lo g u d u = ∫ 1 e ( 1 + t lo g t + t ( 1 + t ) lo g t ) d t = ∫ 1 e t ( 1 + t ) t lo g t + lo g t d t = ∫ 1 e t lo g t d t = lo g 2 t ∣ ∣ ∣ ∣ 1 e − ∫ 1 e t lo g t d t = 2 lo g 2 e − lo g 2 1 = 2 1 = 0 . 5 Let u = t 1 ⟹ d u = − t 2 d t Replace u with t . By integration by parts Note that ∫ 0 e t lo g t d t = S
@Chew-Seong Cheong the lower limit for the first few expressions should be 1, not 0.
Problem Loading...
Note Loading...
Set Loading...
s i n c e
f ( x ) = ∫ 1 x t + 1 l o g ( t ) d t
t h e r e f o r e ,
f ( x 1 ) = ∫ 1 x 1 t + 1 l o g ( t ) d t
n o w w e w i l l m a k e a s u b s t i t u t i o n p u t t i n g t = z 1
h e n c e d t = − z 2 1 d z
a n d f ( x 1 ) t r a n s f o r m s t o ∫ 1 x z 1 + 1 l o g ( z 1 ) ( − z 2 1 d z ) = ∫ 1 x ( z + 1 ) z l o g ( z ) d z
a n d t h e n r e p l a c e z b y t ,
h e n c e F ( x ) = f ( x ) + f ( x 1 ) = ∫ 1 x [ t + 1 l o g ( t ) d t + ( t + 1 ) t l o g ( t ) ] d t = ∫ 1 x t l o g ( t ) d t h e n c e F ( e ) = ∫ 1 e t l o g t d t .
t a k e l o g ( t ) = ′ u ′ a n d s o l v e t h e i n t e g r a l e a s i l y t o o b t a i n F ( e ) = 0 . 5