It must not exist.

Calculus Level 2

When n n is a positive integer, what is the value of

lim n ( 1 ) n 1 sin ( π n 2 + 0.5 n + 1 ) ? \lim_{n \rightarrow \infty} ( -1 ) ^{n-1} \sin ( \pi \sqrt{ n^2 + 0.5 n + 1 } ) ?

sin π 3 \sin\frac{\pi}{3} 1 2 -\frac{1}{\sqrt{2}} 0 0 The limit does not exist.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

U Z
Jan 29, 2015

lim n ( 1 ) n ( 1 ) n 1 sin ( n π π n 2 + 0.5 n + 1 ) \lim_{n \rightarrow \infty} - ( -1 ) ^{n} (-1)^{n - 1} \sin \left( n\pi - \pi \sqrt{ n^2 + 0.5 n + 1 } \right)

lim n ( 1 ) 2 n 1 sin π ( ( n n 2 + n 2 + 1 ) ( n + n 2 + n 2 + 1 ) n + n 2 + n 2 + 1 ) \lim_{n \rightarrow \infty} - (-1)^{2n - 1} \sin\pi \left( \dfrac{\left( n - \sqrt{ n^2 + \dfrac{n}{2} + 1 } \right) \left( n + \sqrt{ n^2 + \dfrac{n}{2} + 1 } \right)}{ n + \sqrt{ n^2 + \dfrac{n}{2} + 1 }}\right)

= lim n ( 1 ) 2 n 1 sin π ( n 2 n 2 n 2 1 n ( 1 + 1 + 1 2 n + 1 n 2 ) ) = \lim_{n \rightarrow \infty} - (-1)^{2n - 1} \sin\pi \left( \dfrac{n^2 - n^2 - \dfrac{n}{2} - 1}{n \left(1 + \sqrt{1 + \dfrac{1}{2n} + \dfrac{1}{n^2}}\right)}\right)

= lim n ( 1 ) 2 n sin π ( 1 2 + 1 n 1 + 1 + 1 2 n + 1 n 2 ) = \lim_{n \rightarrow \infty} - (-1)^{2n} \sin\pi\left(\dfrac{\dfrac{1}{2} + \dfrac{1}{n}}{1 + \sqrt{1 + \dfrac{1}{2n} + \dfrac{1}{n^2}}}\right)

= 1 × sin π 4 = 1 2 = -1 \times \sin\dfrac{\pi}{4} = - \dfrac{1}{\sqrt{2}}

Hi , in the very first line of your solution how did you write 1 × ( 1 ) n -1 \times (-1)^{n} since you are introducing a -ve sign . Also ( 1 ) n (-1)^{n} can't be -ve since it is not given if n is odd so even it can't be -ve

Kudou Shinichi - 6 years, 4 months ago

Log in to reply

see the question we are given ( 1 ) n 1 \dfrac{(-1)^n}{-1}

U Z - 6 years, 4 months ago

Nice solution

Dunstan lame - 6 years, 3 months ago

What's wrong with this:

First we note that sin ( π ( n 2 + 0.5 n + 1 ) 1 / 2 ) = sin ( π n ( 1 + ( 2 n ) 1 + n 2 ) 1 / 2 ) \sin({\pi (n^2+0.5n+1)^{1/2} })= \sin({\pi n (1+(2n)^{-1}+n^{-2} )^{1/2}})

As a second observation ( 1 ) n 1 sin ( π n ( 1 + ( 2 n ) 1 + n 2 ) ) = sin ( π n ( 1 + ( 2 n ) 1 + n 2 ) ) 1. |(-1)^{n-1} \sin({\pi n (1+(2n)^{-1}+n^{-2} )} )| = |\sin({\pi n (1+(2n)^{-1}+n^{-2} )} )| \leq 1.

With this two observations in hand lim n sin ( π n ( 1 + ( 2 n ) 1 + n 2 ) ) = lim n sin ( π n ( 1 + ( 2 n ) 1 + n 2 ) ) Continuity = sin ( lim n π n ( 1 + ( 2 n ) 1 + n 2 ) ) Continuity = sin ( lim n π n × lim n ( 1 + ( 2 n ) 1 + n 2 ) ) = sin ( lim n π n ) = lim n sin ( π n ) Continuity = 0 n is integer. \begin{aligned} \lim_{n\rightarrow \infty} |\sin ({\pi n (1+(2n)^{-1}+n^{-2} )}) | &=|\lim_{n\rightarrow \infty} \sin({\pi n (1+(2n)^{-1}+n^{-2} )}) | \qquad \text{Continuity}\\ & =| \sin({\lim_{n\rightarrow \infty} \pi n (1+(2n)^{-1}+n^{-2} )} )|\qquad \text{Continuity}\\ &=| \sin({\lim_{n\rightarrow \infty} \pi n \times \lim_{n\rightarrow \infty} (1+(2n)^{-1}+n^{-2} )}) |\\ & =| \sin ({\lim_{n\rightarrow \infty} \pi n} )| \\ &=| \lim_{n\rightarrow \infty} \sin({\pi n} )| \qquad \text{Continuity}\\ &=0 \qquad n \text{ is integer.} \end{aligned}

Gerónimo Rojas Barragán - 4 years, 10 months ago

Log in to reply

@Gerónimo Rojas Barragán

Your mistake is in lim n n ( 1 + ( 2 n ) 1 + ) = lim n n × lim n ( 1 + ( 2 n ) 1 + ) \lim_{n\to\infty}n(1+(2n)^{-1}+\cdots) = \lim_{n\to\infty}n\times\lim{n\to\infty}(1+(2n)^{-1}+\cdots) .

Also, you lost a factor 1 2 \frac{1}{2} along the way when getting rid of the square root. It should become ( 4 n ) 1 (4n)^{-1} .

Tom Verhoeff - 4 years, 3 months ago

What was your motivation in writing sin in npi - theta form

Ameya Anjarlekar - 4 years, 9 months ago
Tom Verhoeff
Mar 2, 2017

A more concise solution (using that n n is a positive integer): ( 1 ) n 1 sin ( π n 2 + 0.5 n + 1 ) = (-1)^{n-1}\sin\big(\pi\sqrt{n^2 + 0.5n + 1}\big) = ( 1 ) n 1 sin ( π n 1 + 0.5 / n + 1 / n 2 ) = (-1)^{n-1}\sin\big(\pi n\sqrt{1 + 0.5/n + 1/n^2}\big) = ( 1 ) n 1 sin ( π n ( 1 + 1 2 0.5 / n + O ( 1 / n 2 ) ) = (-1)^{n-1}\sin\big(\pi n(1 + \frac{1}{2}0.5/n + \mathcal{O}(1/n^2)\big) = ( 1 ) n 1 sin ( π n + π / 4 + O ( 1 / n ) ) = (-1)^{n-1}\sin\big(\pi n + \pi/4 + \mathcal{O}(1/n)\big) = sin ( π / 4 + O ( 1 / n ) ) -\sin\big(\pi/4 + \mathcal{O}(1/n)\big) \to sin ( π / 4 ) = -\sin(\pi/4) = 1 2 -\frac{1}{\sqrt{2}}

What’s wrong with saying that sin ( π n 2 + 0.5 n + 1 ) sin ( π n 2 ) = sin ( n π ) = 0 \sin\left(\pi\sqrt{n^2 +0.5n+1 } \right) \to \sin\left(\pi\sqrt{n^2}\right) = \sin(n\pi) = 0 ?

Tavish Music - 6 months, 2 weeks ago

yes exctly the same question as above, why cant I say, lim n sin ( π n 1 + 0.5 n + 1 n 2 ) = 0 \lim_{n\rightarrow\infty}\displaystyle\sin\left(\pi n\sqrt{1+\frac{0.5}{n}+\frac{1}{n^2}}\right)=0

Sarthak Sahoo - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...