It seems easy enough...

Algebra Level 3

{ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 \begin{cases} x+y+z=1 \\ x^2+y^2+z^2=2 \\ x^3+y^3+z^3=3 \end{cases}

Given the above system of equations, what does x 4 + y 4 + z 4 x^4+y^4+z^4 equal? If the answer can be expressed as m n \dfrac mn , where m m and n n are coprime positive integers, then submit m + n m+n .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Joshua Lowrance
Dec 6, 2019

First, notice that ( x + y + z ) 2 = 1 (x+y+z)^2=1

x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 z x = 1 x^2+y^2+z^2+2xy+2yz+2zx=1

( x 2 + y 2 + z 2 ) + 2 ( x y + y z + z x ) = 1 (x^2+y^2+z^2)+2(xy+yz+zx)=1

2 + 2 ( x y + y z + z x ) = 1 2+2(xy+yz+zx)=1

x y + y z + z x = 1 2 \boxed{xy+yz+zx=-\frac{1}{2}}

Next, notice that ( x + y + z ) ( x 2 + y 2 + z 2 ) = 2 (x+y+z)(x^2+y^2+z^2)=2

x 3 + y 3 + z 3 + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2 x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=2

( x 3 + y 3 + z 3 ) + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2 (x^3+y^3+z^3)+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=2

3 + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2 3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=2

x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 1 \boxed{x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=-1}

Third, ( x + y + z ) 3 = 1 (x+y+z)^3=1

x 3 + y 3 + z 3 + 3 x 2 y + 3 x 2 z + 3 y 2 x + 3 y 2 z + 3 z 2 x + 3 z 2 y + 6 x y z = 1 x^3+y^3+z^3+3x^2y+3x^2z+3y^2x+3y^2z+3z^2x+3z^2y+6xyz=1

( x 3 + y 3 + z 3 ) + 3 ( x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y ) + 6 x y z = 1 (x^3+y^3+z^3)+3(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y)+6xyz=1

3 + 3 ( 1 ) + 6 x y z = 1 3+3(-1)+6xyz=1

x y z = 1 6 \boxed{xyz=\frac{1}{6}}

And finally, piece de resistance, ( x 3 + y 3 + z 3 ) ( x + y + z ) ( x 2 + y 2 + z 2 ) ( x y + y z + z x ) + ( x + y + z ) ( x y z ) = 3 ( 1 ) 2 ( 1 2 ) + ( 1 ) ( 1 6 ) = 3 + 1 + 1 6 = 25 6 (x^3+y^3+z^3)(x+y+z)-(x^2+y^2+z^2)(xy+yz+zx)+(x+y+z)(xyz)=3(1)-2(-\frac{1}{2})+(1)(\frac{1}{6})=3+1+\frac{1}{6}=\frac{25}{6}

( x 4 + y 4 + z 4 + x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y ) ( x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y + x 2 y z + x y 2 z + x y z 2 ) + ( x 2 y z + x y 2 z + x y z 2 ) = 25 6 (x^4+y^4+z^4+x^3y+x^3z+y^3x+y^3z+z^3x+z^3y)-(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+x^2yz+xy^2z+xyz^2)+(x^2yz+xy^2z+xyz^2)=\frac{25}{6}

( x 4 + y 4 + z 4 ) + ( x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y x 3 y x 3 z y 3 x y 3 z z 3 x z 3 y ) + ( x 2 y z x y 2 z x y z 2 + x 2 y z + x y 2 z + x y z 2 ) = 25 6 (x^4+y^4+z^4)+(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y-x^3y-x^3z-y^3x-y^3z-z^3x-z^3y)+(-x^2yz-xy^2z-xyz^2+x^2yz+xy^2z+xyz^2)=\frac{25}{6}

( x 4 + y 4 + z 4 ) + ( 0 ) + ( 0 ) = 25 6 (x^4+y^4+z^4)+(0)+(0)=\frac{25}{6}

x 4 + y 4 + z 4 = 25 6 \boxed{x^4+y^4+z^4=\frac{25}{6}}

Let P n = x n + y n + z n P_n = x^n+y^n+z^n , where n n is a positive integer, and S 1 = x + y + x = P 1 S_1 = x+y+x = P_1 , S 2 = x y + y z + z x S_2 = xy+yz+zx , and S 3 = x y z S_3 = xyz . By Newton's identities or Newton's sums , we have:

P 1 = S 1 = 1 Given P 2 = S 1 P 1 2 S 2 = 1 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 + 1 2 + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 3 + 1 + 1 6 = 25 6 \begin{aligned} P_1 & = S_1 = 1 & \small \blue{\text{Given}} \\ P_2 & = S_1P_1 - 2S_2 = 1-2S_2 = 2 & \small \blue{\implies S_2 = -\frac 12} \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 2+\frac 12 + 3S_3 = 3 & \small \blue{\implies S_3 = \frac 16} \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = 3+1 + \frac 16 = \frac {25}6 \end{aligned}

Therefore, m + n = 25 + 6 = 31 m+n = 25+6 = \boxed{31} .

From the given equations we get x + y + z = 1 , x y + y z + z x = 1 2 , x y z = 1 6 x+y+z=1, xy+yz+zx=-\dfrac{1}{2}, xyz=\dfrac{1}{6} . So x , y , z x, y, z are the roots of the equation X 3 X 2 1 2 X 1 6 = 0 X^3-X^2-\dfrac{1}{2}X-\dfrac{1}{6}=0 , or X 4 = X 3 + 1 2 X 2 + 1 6 X X^4=X^3+\dfrac{1}{2}X^2+\dfrac{1}{6}X . Therefore x 4 + y 4 + z 4 = 3 + 1 + 1 6 = 25 6 x^4+y^4+z^4=3+1+\dfrac{1}{6}=\dfrac{25}{6} . So the required answer is 25 + 6 = 31 25+6=\boxed {31}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...