⎩ ⎪ ⎨ ⎪ ⎧ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3
Given the above system of equations, what does x 4 + y 4 + z 4 equal? If the answer can be expressed as n m , where m and n are coprime positive integers, then submit m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let P n = x n + y n + z n , where n is a positive integer, and S 1 = x + y + x = P 1 , S 2 = x y + y z + z x , and S 3 = x y z . By Newton's identities or Newton's sums , we have:
P 1 P 2 P 3 P 4 = S 1 = 1 = S 1 P 1 − 2 S 2 = 1 − 2 S 2 = 2 = S 1 P 2 − S 2 P 1 + 3 S 3 = 2 + 2 1 + 3 S 3 = 3 = S 1 P 3 − S 2 P 2 + S 3 P 1 = 3 + 1 + 6 1 = 6 2 5 Given ⟹ S 2 = − 2 1 ⟹ S 3 = 6 1
Therefore, m + n = 2 5 + 6 = 3 1 .
From the given equations we get x + y + z = 1 , x y + y z + z x = − 2 1 , x y z = 6 1 . So x , y , z are the roots of the equation X 3 − X 2 − 2 1 X − 6 1 = 0 , or X 4 = X 3 + 2 1 X 2 + 6 1 X . Therefore x 4 + y 4 + z 4 = 3 + 1 + 6 1 = 6 2 5 . So the required answer is 2 5 + 6 = 3 1
Problem Loading...
Note Loading...
Set Loading...
First, notice that ( x + y + z ) 2 = 1
x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 z x = 1
( x 2 + y 2 + z 2 ) + 2 ( x y + y z + z x ) = 1
2 + 2 ( x y + y z + z x ) = 1
x y + y z + z x = − 2 1
Next, notice that ( x + y + z ) ( x 2 + y 2 + z 2 ) = 2
x 3 + y 3 + z 3 + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2
( x 3 + y 3 + z 3 ) + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2
3 + x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = 2
x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y = − 1
Third, ( x + y + z ) 3 = 1
x 3 + y 3 + z 3 + 3 x 2 y + 3 x 2 z + 3 y 2 x + 3 y 2 z + 3 z 2 x + 3 z 2 y + 6 x y z = 1
( x 3 + y 3 + z 3 ) + 3 ( x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y ) + 6 x y z = 1
3 + 3 ( − 1 ) + 6 x y z = 1
x y z = 6 1
And finally, piece de resistance, ( x 3 + y 3 + z 3 ) ( x + y + z ) − ( x 2 + y 2 + z 2 ) ( x y + y z + z x ) + ( x + y + z ) ( x y z ) = 3 ( 1 ) − 2 ( − 2 1 ) + ( 1 ) ( 6 1 ) = 3 + 1 + 6 1 = 6 2 5
( x 4 + y 4 + z 4 + x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y ) − ( x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y + x 2 y z + x y 2 z + x y z 2 ) + ( x 2 y z + x y 2 z + x y z 2 ) = 6 2 5
( x 4 + y 4 + z 4 ) + ( x 3 y + x 3 z + y 3 x + y 3 z + z 3 x + z 3 y − x 3 y − x 3 z − y 3 x − y 3 z − z 3 x − z 3 y ) + ( − x 2 y z − x y 2 z − x y z 2 + x 2 y z + x y 2 z + x y z 2 ) = 6 2 5
( x 4 + y 4 + z 4 ) + ( 0 ) + ( 0 ) = 6 2 5
x 4 + y 4 + z 4 = 6 2 5