It seems to the sum of squares

Geometry Level 4

k = 1 n 1 ( C P k ) 2 \large \sum_{k=1}^{n-1} \left(\overline{CP_k}\right)^2

Let A B C \triangle ABC be a right triangle with C = 9 0 \angle C = 90^\circ and A B = c AB=c . If we divide side A B AB into n n equal parts by points P 1 , P 2 , , P n 1 , P_1, P_2, \ldots, P_{n-1}, what is the value of the above sum?

( n + 1 ) ( 2 n + 1 ) c 2 6 n \dfrac{(n+1)(2n+1)c^2}{6n} ( n + 1 ) ( 2 n + 1 ) c 2 2 n \dfrac{(n+1)(2n+1)c^2}{2n} ( n 1 ) ( 2 n 1 ) c 2 2 n \dfrac{(n-1)(2n-1)c^2}{2n} ( n 1 ) ( 2 n 1 ) c 2 6 n \dfrac{(n-1)(2n-1)c^2}{6n} ( n 1 ) ( 2 n 1 ) c 2 3 n \dfrac{(n-1)(2n-1)c^2}{3n} ( n + 1 ) ( 2 n + 1 ) c 2 3 n \dfrac{(n+1)(2n+1)c^2}{3n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tapas Mazumdar
May 30, 2017

Let a point P k P_k be located somewhere on the side A B \overline{AB} such that it's distances from vertices B B and A A are c k n \dfrac{ck}{n} and c c k n c - \dfrac{ck}{n} respectively.

By Stewart's theorem , we have

a 2 ( c c k n ) + b 2 c k n = c ( c k n ( c c k n ) + d 2 ) a 2 ( 1 k n ) + b 2 k n = c 2 k n c 2 k 2 n 2 + d 2 d 2 = a 2 ( a 2 b 2 + c 2 ) n k + c 2 n 2 k 2 d 2 = a 2 2 a 2 n k + c 2 n 2 k 2 [ c 2 = a 2 + b 2 ] \begin{aligned} & a^2 \left( c - \dfrac{ck}{n} \right) + b^2 \dfrac{ck}{n} = c \left( \dfrac{ck}{n} \left( c - \dfrac{ck}{n} \right) + d^2 \right) \\ \implies & a^2 \left( 1 - \dfrac kn \right) + b^2 \dfrac kn = \dfrac{c^2 k}{n} - \dfrac{c^2 k^2}{n^2} + d^2 \\ \implies & d^2 = a^2 - \dfrac{\left( a^2 - b^2 + c^2 \right)}{n} k + \dfrac{c^2}{n^2} k^2 \\ \implies & d^2 = a^2 - \dfrac{2a^2}{n} k + \dfrac{c^2}{n^2} k^2 & \small {\color{#3D99F6} \left[ \because c^2 = a^2 + b^2 \right]} \end{aligned}

Note that d 2 = C P k 2 d^2 = \overline{CP}_k^2 and so we have

k = 1 n 1 C P k 2 = k = 1 n 1 d 2 = a 2 k = 1 n 1 ( 1 ) 2 a 2 n k = 1 n 1 k + c 2 n 2 k = 1 n 1 k 2 = a 2 ( n 1 ) 2 a 2 n ( n 1 ) n 2 + c 2 n 2 ( n 1 ) n ( 2 n 1 ) 6 = a 2 ( n 1 ) a 2 ( n 1 ) + ( n 1 ) ( 2 n 1 ) c 2 6 n = ( n 1 ) ( 2 n 1 ) c 2 6 n \begin{aligned} \sum_{k=1}^{n-1} \overline{CP}_k^2 = \sum_{k=1}^{n-1} d^2 &= a^2 \sum_{k=1}^{n-1} (1) - \dfrac{2a^2}{n} \sum_{k=1}^{n-1} k + \dfrac{c^2}{n^2} \sum_{k=1}^{n-1} k^2 \\ &= a^2 (n-1) - \dfrac{2a^2}{n} \cdot \dfrac{(n-1)n}{2} + \dfrac{c^2}{n^2} \cdot \dfrac{(n-1)n(2n-1)}{6} \\ &= a^2 (n-1) - a^2 (n-1) + \dfrac{(n-1)(2n-1) c^2}{6n} \\ &= \boxed{\dfrac{(n-1)(2n-1) c^2}{6n}} \end{aligned}

Do using coordinate geometry much simpler

Nivedit Jain - 4 years ago
Chew-Seong Cheong
May 30, 2017

By cosine rule , we have:

C P k 2 = B P k 2 + B C 2 2 B P k B C cos B k = 1 n 1 C P k 2 = k = 1 n 1 ( ( k c n ) 2 + B C 2 2 ( k c n ) B C cos B ) = ( n 1 ) n ( 2 n 1 ) c 2 6 n 2 + ( n 1 ) B C 2 2 ( n ( n 1 ) c 2 n ) B C cos B Note that B C = c cos B = ( n 1 ) ( 2 n 1 ) c 2 6 n + ( n 1 ) c 2 cos 2 B ( n 1 ) c 2 cos 2 B = ( n 1 ) ( 2 n 1 ) c 2 6 n \begin{aligned} \overline{CP}_k^2 & = \overline{BP}_k^2 + \overline{BC}^2 - 2\overline{BP}_k \overline{BC}\cos B \\ \sum_{k=1}^{n-1} \overline{CP}_k^2 & = \sum_{k=1}^{n-1} \left(\left(\frac {kc}n \right)^2 + \overline{BC}^2 - 2\left(\frac {kc}n \right) \overline{BC}\cos B \right) \\ & = \frac {(n-1)n(2n-1)c^2}{6n^2} + (n-1){\color{#3D99F6}\overline{BC}}^2 - 2\left(\frac {n(n-1)c}{2n} \right){\color{#3D99F6}\overline{BC}}\cos B & \small \color{#3D99F6} \text{Note that }\overline{BC} = c \cos B \\ & = \frac {(n-1)(2n-1)c^2}{6n} + (n-1){\color{#3D99F6}c^2\cos^2 B} - (n-1){\color{#3D99F6}c^2\cos^2 B} \\ & = \boxed{\dfrac {(n-1)(2n-1)c^2}{6n}} \end{aligned}

Boi (보이)
Jun 12, 2017

Shhh it's a trick, don't tell anybody.

If you're too lazy to calculate all the stuff, just put n = 0 n=0 and n = 1 n=1 .

If n = 0 n=0 , there is no line, therefore the sum is 0 0 .

If n = 1 n=1 , there is a line whose length is half of c c , so the sum is c 2 4 \dfrac{c^2}{4} .

Substitute that, and we can see that only ( n 1 ) ( 2 n 1 ) c 2 6 n \dfrac{(n-1)(2n-1)c^2}{6n} can be the solution to this problem.

;)

Bro, had the same solution

Vedant Saini - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...