I want everything real

Algebra Level 5

x 4 ( a 2 5 a + 6 ) x 2 ( a 2 3 a + 2 ) = 0 \large x^4-(a^2-5a+6)x^2-(a^2-3a+2)=0

Find the sum of all integral values of constant a a for which only real roots exist for the equation above.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chirag Trasikar
Jan 30, 2015

The given equation x 4 ( a 3 ) ( a 2 ) x 2 ( a 1 ) ( a 2 ) = 0 ( 1 ) x^{4}-(a-3)(a-2)x^{2}-(a-1)(a-2)=0 \rightarrow (1)

can be written as: t 2 ( a 3 ) ( a 2 ) t ( a 1 ) ( a 2 ) = 0 t^{2}-(a-3)(a-2)t-(a-1)(a-2)=0

where t = x 2 t=x^{2}

Now, the roots of this equation have to be positive or else the roots of ( 1 ) (1) will be imaginary, thus

i ) i) The product of the roots ( a 1 ) ( a 2 ) 0 -(a-1)(a-2) \geq 0

i i ) ii) The sum of the roots ( a 3 ) ( a 2 ) 0 (a-3)(a-2) \geq 0

From ( i ) (i) we have 1 a 2 1 \leq a \leq 2

and from ( i i ) (ii) we have a 2 , 3 a a \leq 2, 3 \leq a

The overlapping interval is 1 a 2 1 \leq a \leq 2

Hence the sum of the integral values of a = 1 + 2 = 3 a = 1+2 = \boxed{3}

Aareyan Manzoor
Feb 8, 2015

first let t = x 2 t=x^2 2 t 2 ( a 2 5 a + 6 ) t ( a 2 3 a + 2 ) = 0 t^2-(a^2 -5a+6)t-(a^2-3a+2)=0 by the quadratic formula, t = a 2 5 a + 6 ± ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) 2 t=\dfrac{a^2-5a+6\pm\sqrt{(a^2-5a+6)^2+4(a^2-3a+2)}}{2} hence x = a 2 5 a + 6 ± ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) 2 , a 2 5 a + 6 ± ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) 2 x=\sqrt{\dfrac{a^2-5a+6\pm\sqrt{(a^2-5a+6)^2+4(a^2-3a+2)}}{2}},-\sqrt{\dfrac{a^2-5a+6\pm\sqrt{(a^2-5a+6)^2+4(a^2-3a+2)}}{2}} for all x to be real , a 2 5 a + 6 ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) 2 0 \dfrac{a^2-5a+6-\sqrt{(a^2-5a+6)^2+4(a^2-3a+2)}}{2}\geq 0 now ,we get ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) a 2 5 a + 6 -\sqrt{(a^2-5a+6)^2+4(a^2-3a+2)}\geq a^2-5a+6 ( a 2 5 a + 6 ) 2 + 4 ( a 2 3 a + 2 ) ( a 2 5 a + 6 ) 2 (a^2-5a+6)^2+4(a^2-3a+2)\leq (a^2-5a+6)^2 a 2 3 a + 2 0 a^2-3a+2\leq 0 ( a 1 ) ( a 2 ) 0 (a-1)(a-2)\leq 0 1 a 2 1\leq a\leq 2 hence, the sum of the integral values are 1 + 2 = 3 1+2=\boxed{3}

T h e g i v e n e q u a t i o n i s q u a d r a t i c i n x 2 . S o r e a l v a l u e s x 2 c a n n o t b e n e g a t i v e . ( a 2 5 a + 6 ) = ( a 2 ) ( a 3 ) , ( a 2 3 a + 2 ) = ( a 2 ) ( a 1 ) . S o t h e p r o d u c t o f r o o t s i s ( a 2 ) ( a 1 ) , w h i c h i s n e g a t i v e o r 0. S o o n l y p o s s i b l e s o l u t i o n i s i f x 2 = 0. S o i f a = 2 , i t i s e a s y t o s e e x 4 = 0. o n l y r o o t s a r e r e a l 0 s . I f a = 1 , x 4 2 x 2 0 = 0 , g i v e s x 2 = 0 o r x 2 = 2. S o l u t i o n a r e 0 , 0 , 2 , 2 r e a l r o o t s . S o a = 1 o r a = 2 a r e o n l y s o l u t i o n s . S o 1 + 2 = 3. The~given ~equation~is~quadratic~in~x^2.~So~real~values~~x^2~can~ not~be~negative. \\ (a^2-5a+6)=(a-2)(a-3),~~~~~~(a^2-3a+2)=(a-2)(a-1).\\ So ~the~product~of~roots~is~~-~ (a-2)(a-1), ~which ~is~negative~or~0.\\ So~only~possible~solution~is~if~x^2=0.\\ So ~if~a=2,~it~is~easy~to~see~x^4=0.\ ~only~roots~are~real~0s.\\ If~a=1,~~x^4-2x^2-0=0,~gives~x^2=0~~or~~x^2=2.~~ Solution~are~~0,~0,~-~\sqrt2,~\sqrt2~real~roots.\\ So~a=1~or~a=2~are~only~solutions.\\ So ~1+2=\Large \color{#D61F06}{3}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...