It won't go so far

Algebra Level 2

100001 + 100003 + 100005 + + 199999 1 + 3 + 5 + 7 + + 99999 = ? \frac{100001 + 100003 + 100005 +\cdots+ 199999} {1 + 3 + 5 + 7 +\cdots+99999} =\, ?

5 50 3 1000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Feb 3, 2017

Short solution:

( 100001 + 199999 ) × 50000 ( 1 + 99999 ) × 50000 = 300000 × 50000 100000 × 50000 = 3 \displaystyle \dfrac {(100001 + 199999) \times 50000}{(1 + 99999) \times 50000} = \dfrac {300000 \times 50000}{100000 \times 50000} = 3

Long solution:

In the numerator,

( a k + a n k ) n u m e r a t o r \displaystyle (a_k + a_{n - k})_{numerator} is a constant value:

100001 + 199999 = 100003 + 199997 = ( a k + a n k ) n u m e r a t o r = 300000 \displaystyle 100001 + 199999 = 100003 + 199997 = (a_k + a_{n - k})_{numerator} = 300000

And there are

( a n a 1 ) + 1 2 = 100000 2 = 50000 \displaystyle \dfrac{(a_n - a_1) + 1}{2} = \dfrac {100000}{2} = 50000

iterations of this constant value, so

100001 + 100003 + . . . + 199997 + 199999 = 300000 × 50000 \displaystyle 100001 + 100003\ + \ ...\ + 199997 + 199999 = 300000 \times 50000

Similarly, in the denominator ( a k + a n k ) d e n o m i n a t o r \displaystyle (a_k + a_{n - k})_{denominator} is also constant.

Notice that all of the terms in the denominator are just the terms in the numerator + 100000 \displaystyle + \ 100000 , so

( a k + a n k ) d e n o m i n a t o r = ( a k + a n k ) n u m e r a t o r ( 100000 × 2 ) \displaystyle (a_k + a_{n - k})_{denominator} = (a_k + a_{n - k})_{numerator} - (100000 \times 2) .

( a k + a n k ) d e n o m i n a t o r = 100000 \displaystyle (a_k + a_{n - k})_{denominator} = 100000

And since the terms in the denominator are all just shifted from those in the numerator by 100000 100000 , it has the same number of iterations of a k + a n k : 50000 \displaystyle a_k + a_{n - k}: 50000 .

100001 + 100003 + 100005 + . . . + 199999 1 + 3 + 5 + . . . + 99999 = 300000 × 50000 100000 × 50000 = 3 \displaystyle \dfrac {100001 + 100003 + 100005\ + \ ... \ + 199999}{1 + 3 + 5\ + \ ... \ + 99999} = \dfrac {300000 \times 50000}{100000 \times 50000} = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...