(ITA) Radical Power

Algebra Level 3

Evaluate the sum of all real values of x x that satisfy the following equation.

8 x + 1 + 44 2 x + 1 + 64 = 19 4 x + 1 8^{\sqrt{x+1}} + 44 \cdot 2^{\sqrt{x+1}} + 64 = 19 \cdot 4^{\sqrt{x+1}}

This problem was adapted from ITA's 2013 Math Paper.

20 14 16 18

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

8 x + 1 19 × 4 x + 1 + 44 × 2 x + 1 + 64 = 0 8^{\sqrt{x+1}} - 19 \times 4^{\sqrt{x+1}} + 44 \times 2^{\sqrt{x+1}} + 64 = 0

Substituting 2 x + 1 = a 2^{\sqrt{x+1}} = a ,

a 3 19 a 2 + 44 a + 64 = 0 a^3- 19a^2 + 44a + 64 = 0

a 3 + a 2 20 a 2 20 a + 64 a + 64 = 0 a^3 + a^2 -20a^2 - 20a + 64a + 64 = 0

a 2 ( a + 1 ) 20 a ( a + 1 ) + 64 ( a + 1 ) = 0 a^2(a+1)-20a(a+1)+64(a+1) = 0

( a + 1 ) ( a 2 20 a + 64 ) = 0 (a+1)(a^2-20a+64) = 0

( a + 1 ) ( a 16 ) ( a 4 ) = 0 (a+1)(a-16)(a-4)=0

( 2 x + 1 + 1 ) ( 2 x + 1 16 ) ( 2 x + 1 4 ) = 0 (2^{\sqrt{x+1}}+1)(2^{\sqrt{x+1}}-16)(2^{\sqrt{x+1}}-4)=0

Now, 2 x + 1 16 = 0 x = 15 2^{\sqrt{x+1}} - 16 = 0 \longrightarrow x = 15

2 x + 1 4 = 0 x = 3 2^{\sqrt{x+1}} - 4 = 0 \longrightarrow x = 3

2 x + 1 + 1 = 0 2^{\sqrt{x+1}} +1 = 0 has no real value.

Hence, the answer is 15 + 3 = 18 15+3 = \boxed{18}

8 x + 1 19 4 x + 1 + 44 2 x + 1 + 64 = 0 8^{\sqrt{x+1}} - 19 \cdot 4^{\sqrt{x+1}} + 44 \cdot 2^{\sqrt{x+1}} + 64 = 0 y = 2 x + 1 y 3 19 y 2 + 44 y + 64 = 0 y = 2^{\sqrt{x+1}} \Rightarrow y^3 - 19y^2 + 44y + 64 = 0 1 + 44 = 19 + 64 y = 1 1 + 44 = -19 + 64 \Rightarrow y = -1 ( y + 1 ) ( y 2 20 y + 64 ) = 0 (y+1)(y^2-20y+64)=0 V y = { 1 , 4 , 16 } V_y = \left \{ -1, 4 , 16 \right \} 2 x + 1 = 1 , 2 2 , 2 4 2^{\sqrt{x+1}}= -1, \; 2^2, \; 2^4 2 k 0 , k R 2^k \geq 0, \; \forall \; k \in \mathbb{R} x + 1 = 2 , x + 1 = 4 \sqrt{x+1} = 2, \; \sqrt{x+1} = 4 V x = { 3 , 15 } V_x = \left \{ 3, 15 \right \} Σ ( x ) = 18. \boxed{\Sigma(x) = 18.}

There is a typo in the problem: The right-hand side should be 19 4 x + 1 19 \cdot 4^{\sqrt{x + 1}} , not 19 4 x + 1 19 \cdot 4^{x + 1} .

Jon Haussmann - 7 years, 4 months ago

Log in to reply

EDIT: Fixed. Thanks a lot for telling me, Jon.

Guilherme Dela Corte - 7 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...