∫ 0 1 ( x 2 + 4 x + 1 ) 5 3 x + 2 d x = B A − D E C
If the equation above holds true for positive integers A , B , C , D and E with least values and E being square-free, find A + B + C + D + E .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I believe I had a bit shorter method. Since I lost the book where I had done this, I've got to confirm it.
I Did the same! :)
Problem Loading...
Note Loading...
Set Loading...
\begin{aligned} I & = \int_0^1 \frac{3x+2}{\sqrt{(x^2+4x+1)^5}} \ dx \\ & = \int_0^1 \frac{3x+2}{(x^2+4x+1)^\frac{5}{2}} \ dx \\ & = \int_0^1 \left( \frac{3}{2} \cdot \frac{2x+4}{(x^2+4x+1)^\frac{5}{2}} - \frac{4}{(x^2+4x+1)^\frac{5}{2}} \right) dx \\ & = - \frac{1}{(x^2+4x+1)^\frac{3}{2}} \bigg|_0^1 - \int_0^1 \frac{4}{((x+2)^2-3)^\frac{5}{2}} \ dx \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9\sqrt{3}} \int_0^1 \frac{1}{\left(\left(\color{#3D99F6}{\frac{x+2}{\sqrt{3}}}\right)^2-1\right)^\frac{5}{2}} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }\sec u = \frac{x+2}{\sqrt{3}} \implies \sec u \tan u \ du = \frac{dx}{\sqrt{3}}} \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{\pi/6}^{\tan^{-1}\sqrt{2}} \frac{\sec u}{\tan^4 u} \ du \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{\pi/6}^{\tan^{-1}\sqrt{2}} \frac{\cos^3 u}{\sin^4 u} \ du \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{1/2}^\sqrt{2/3} \frac{\cos^2 u}{\sin^4 u} \ d\sin u \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{1/2}^\sqrt{2/3} \left( \frac{1}{\sin^4 u} - \frac{1}{\sin^2 u} \right) \ d\sin u \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \left[ -\frac{1}{3\sin^3 u} + \frac{1}{\sin u} \right]_{1/2}^\sqrt{2/3} \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \left[ -\frac{1}{2}\sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} + \frac{8}{3} - 2 \right] \\ & = \frac{19}{27} - \frac{5}{6\sqrt{6}} \end{aligned}
⟹ A + B + C + D + E = 1 9 + 2 7 + 5 + 6 + 6 = 6 3