It's a bit long

Calculus Level 5

0 1 3 x + 2 ( x 2 + 4 x + 1 ) 5 d x = A B C D E \large\int_0^1\frac{3x+2}{\sqrt{(x^2+4x+1)^5}}\,dx = \dfrac A B - \dfrac C{D\sqrt E}

If the equation above holds true for positive integers A , B , C , D A,B,C,D and E E with least values and E E being square-free, find A + B + C + D + E A+B+C+D+E .


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 27, 2016

\begin{aligned} I & = \int_0^1 \frac{3x+2}{\sqrt{(x^2+4x+1)^5}} \ dx \\ & = \int_0^1 \frac{3x+2}{(x^2+4x+1)^\frac{5}{2}} \ dx \\ & = \int_0^1 \left( \frac{3}{2} \cdot \frac{2x+4}{(x^2+4x+1)^\frac{5}{2}} - \frac{4}{(x^2+4x+1)^\frac{5}{2}} \right) dx \\ & = - \frac{1}{(x^2+4x+1)^\frac{3}{2}} \bigg|_0^1 - \int_0^1 \frac{4}{((x+2)^2-3)^\frac{5}{2}} \ dx \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9\sqrt{3}} \int_0^1 \frac{1}{\left(\left(\color{#3D99F6}{\frac{x+2}{\sqrt{3}}}\right)^2-1\right)^\frac{5}{2}} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }\sec u = \frac{x+2}{\sqrt{3}} \implies \sec u \tan u \ du = \frac{dx}{\sqrt{3}}} \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{\pi/6}^{\tan^{-1}\sqrt{2}} \frac{\sec u}{\tan^4 u} \ du \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{\pi/6}^{\tan^{-1}\sqrt{2}} \frac{\cos^3 u}{\sin^4 u} \ du \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{1/2}^\sqrt{2/3} \frac{\cos^2 u}{\sin^4 u} \ d\sin u \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \int_{1/2}^\sqrt{2/3} \left( \frac{1}{\sin^4 u} - \frac{1}{\sin^2 u} \right) \ d\sin u \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \left[ -\frac{1}{3\sin^3 u} + \frac{1}{\sin u} \right]_{1/2}^\sqrt{2/3} \\ & = 1 - \frac{1}{6\sqrt{6}} - \frac{4}{9} \left[ -\frac{1}{2}\sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} + \frac{8}{3} - 2 \right] \\ & = \frac{19}{27} - \frac{5}{6\sqrt{6}} \end{aligned}

A + B + C + D + E = 19 + 27 + 5 + 6 + 6 = 63 \implies A+B+C+D+E = 19+27+5+6+6 = \boxed{63}

I believe I had a bit shorter method. Since I lost the book where I had done this, I've got to confirm it.

Kishore S. Shenoy - 5 years ago

I Did the same! :)

Prakhar Bindal - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...