It's A Factorial Bonanza

Calculus Level 3

If n n is a odd positive integer, find K = 0 n ( ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! ) \displaystyle\sum_{K = 0}^{n} \left(\left(\frac{2K + 1}{2}\right)! \left(\frac{-2K - 3}{2}\right)!\right) .

Application 1 of the above

Application 2 of the above


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 28, 2018

Relevant wiki: Gamma Function

S = k = 0 n ( 2 k + 1 2 ) ! ( 2 k + 3 2 ) ! Gamma function Γ ( x + 1 ) = x ! = k = 0 n Γ ( 2 k + 3 2 ) Γ ( 2 k + 1 2 ) Note that Γ ( x ) Γ ( x ) = π x sin ( π x ) = k = 0 n Γ ( 2 k + 3 2 ) π 2 k + 1 2 Γ ( 2 k + 1 2 ) sin ( 2 k + 1 2 π ) also Γ ( 1 + x ) = z Γ ( x ) = k = 0 n π sin ( 2 k + 1 2 π ) Since sin ( 2 k + 1 2 π ) = { 1 if x is even. 1 if x is odd. = k = 0 n ( 1 ) n + 1 π = { π if n is even. 0 if n is odd. \begin{aligned} S & = \sum_{k=0}^n \left(\frac {2k+1}2\right)! \left(-\frac {2k+3}2\right)! & \small \color{#3D99F6} \text{Gamma function }\Gamma(x+1) = x! \\ & = \sum_{k=0}^n \Gamma \left(\frac {2k+3}2\right) \Gamma \left(-\frac {2k+1}2\right) & \small \color{#3D99F6} \text{Note that } \Gamma(x)\Gamma(-x) = - \frac \pi{x\sin (\pi x)} \\ & = \sum_{k=0}^n - \frac {{\color{#3D99F6}\Gamma \left(\frac {2k+3}2\right)}\pi}{{\color{#3D99F6}\frac {2k+1}2\Gamma \left(\frac {2k+1}2\right)} \sin \left(\frac {2k+1}2\pi \right)} & \small \color{#3D99F6} \text{also } \Gamma(1+x) = z\Gamma(x) \\ & = \sum_{k=0}^n \frac {-\pi}{\sin \left(\frac {2k+1}2\pi \right)} & \small \color{#3D99F6} \text{Since } \sin \left(\frac {2k+1}2\pi\right) = \begin{cases} 1 & \text{if }x \text{ is even.} \\ -1 & \text{if }x \text{ is odd.} \end{cases} \\ & = \sum_{k=0}^n (-1)^{n+1}\pi = \begin{cases} -\pi & \text{if }n \text{ is even.} \\ \boxed 0 & \text{if }n \text{ is odd.} \end{cases} \end{aligned}

Brian Moehring
Aug 27, 2018

Using the property that r ! = r ( r 1 ) ! r! = r(r-1)! for any r R { 0 , 1 , 2 , 3 , } , r \in \mathbb{R}\setminus\{0,-1,-2,-3,\ldots\}, ( 2 ( K + 1 ) + 1 2 ) ! ( 2 ( K + 1 ) 3 2 ) ! = ( 2 K + 3 2 ) ! ( 2 K 3 2 1 ) ! = ( 2 K + 3 2 ) ( 2 K + 1 2 ) ! ( 1 2 K 3 2 ) ( 2 K 3 2 ) ! = ( 1 ) ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! \begin{aligned} \left(\frac{2(K+1)+1}{2}\right)!\left(\frac{-2(K+1)-3}{2}\right)! &= \left(\frac{2K+3}{2}\right)!\left(\frac{-2K-3}{2}-1\right)! \\ &= \left(\frac{2K+3}{2}\right)\left(\frac{2K+1}{2}\right)!\left(\frac{1}{\frac{-2K-3}{2}}\right)\left(\frac{-2K-3}{2}\right)! \\ &= (-1) \cdot \left(\frac{2K+1}{2}\right)!\left(\frac{-2K-3}{2}\right)! \end{aligned} which we can use as the inductive step to show for non-negative integral K K that ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! = ( 1 ) K ( 1 2 ) ! ( 3 2 ) ! \left(\frac{2K+1}{2}\right)!\left(\frac{-2K-3}{2}\right)! = (-1)^K \left(\frac{1}{2}\right)!\left(-\frac{3}{2}\right)!

Then K = 0 n ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! = K = 0 n ( 1 ) K ( 1 2 ) ! ( 3 2 ) ! = { 0 if n is odd ( 1 2 ) ! ( 3 2 ) ! if n is even \sum_{K=0}^n \left(\frac{2K+1}{2}\right)!\left(\frac{-2K-3}{2}\right)! = \sum_{K=0}^n(-1)^K \left(\frac{1}{2}\right)!\left(-\frac{3}{2}\right)! = \begin{cases}0 & \text{ if } n \text{ is odd} \\ \left(\frac{1}{2}\right)!\left(-\frac{3}{2}\right)! & \text{ if } n \text{ is even}\end{cases}

Since we're told n n is odd, the answer is 0 \boxed{0}

Rocco Dalto
Aug 27, 2018

Using the gamma function Γ ( p ) = 0 t p 1 e t d t \Gamma(p) = \int_{0}^{\infty} t^{p - 1} e^{-t} dt we obtain:

Γ ( 1 2 ) = 0 t 1 2 e t d t \Gamma(\dfrac{1}{2}) = \displaystyle\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt

Let s 2 = t 2 s d s = d t s^2 = t \implies 2s ds = dt \implies

Γ ( 1 2 ) = 2 0 e s 2 d s \Gamma(\dfrac{1}{2}) = 2\displaystyle\int_{0}^{\infty} e^{-s^2} ds

Since s is a dummy variable we can write:

( Γ ( 1 2 ) ) 2 = (\Gamma(\dfrac{1}{2}))^2 = 4 0 e x 2 d x 0 e y 2 d y = 4\displaystyle\int_{0}^{\infty} e^{-x^2} dx \int_{0}^{\infty} e^{-y^2} dy = 4 0 0 e ( x 2 + y 2 ) d x d y 4\displaystyle\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy

Let x = r cos θ , y = r sin θ x = r\cos\theta, y = r\sin\theta

Using the Jacobian ( Γ ( 1 2 ) ) 2 = 4 0 π 2 0 e r 2 r d r d θ = \implies (\Gamma(\dfrac{1}{2}))^2 = 4\displaystyle\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^2} r dr d\theta = 2 0 π 2 e r 2 0 d θ = 2 0 π 2 d θ = π Γ ( 1 2 ) = π -2\displaystyle\int_{0}^{\frac{\pi}{2}} e^{-r^2}|_{0}^{\infty} d\theta = 2\displaystyle\int_{0}^{\frac{\pi}{2}} d\theta = \pi \implies \Gamma(\dfrac{1}{2}) = \sqrt{\pi}

Now, using integration by parts you can show that Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p)

Show Γ ( 1 ) = 1 \Gamma(1) = 1 and recursively using Γ ( p + 1 ) = p Γ ( p ) Γ ( p + 1 ) = p ! \Gamma(p + 1) = p \Gamma(p) \implies \Gamma(p + 1) = p! for any integer p 0 p \geq 0 and p can be extended to reals so that Γ ( 1 2 ) = Γ ( 1 2 + 1 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \Gamma(\dfrac{-1}{2} + 1) = \sqrt{\pi} = (\dfrac{-1}{2})!

Using Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p) and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

S 0 = Γ ( 3 2 ) = 1 2 Γ ( 1 2 ) = π 2 = ( 1 2 ) ! S_{0} = \Gamma(\dfrac{3}{2}) = \dfrac{1}{2} * \Gamma(\dfrac{1}{2}) = \dfrac{\sqrt{\pi}}{2} = (\dfrac{1}{2})!

S 1 = Γ ( 5 2 ) = 3 2 Γ ( 3 2 ) = 1 3 π 2 2 = ( 3 2 ) ! S_{1} = \Gamma(\dfrac{5}{2}) = \dfrac{3}{2} * \Gamma(\dfrac{3}{2}) = \dfrac{1 * 3 * \sqrt{\pi}}{2^2} = (\dfrac{3}{2})!

S 2 = Γ ( 7 2 ) = 5 2 Γ ( 5 2 ) = 1 3 5 π 2 3 = ( 5 2 ) ! S_{2} = \Gamma(\dfrac{7}{2}) = \dfrac{5}{2} * \Gamma(\dfrac{5}{2}) = \dfrac{1 * 3 * 5 * \sqrt{\pi}}{2^3} = (\dfrac{5}{2})!

In General:

S K = Γ ( 2 K + 3 2 ) = 1 3 5 ( 2 K + 1 ) π 2 K + 1 = ( K + 1 2 ) ! S_{K} = \Gamma(\dfrac{2K + 3}{2}) = \dfrac{1 * 3 * 5 * * * (2K + 1) * \sqrt{\pi}}{2^{K + 1}} = (K + \frac{1}{2})!

( K + 1 2 ) ! = ( 2 K + 1 ) ! π 2 2 K + 1 K ! \implies (K + \dfrac{1}{2})! = \dfrac{(2K + 1)! * \sqrt{\pi}}{2^{2K + 1} * K!} , where K K is a non-negative integer.

Note: ( 2 K + 1 ) ! = 1 2 3 ( 2 K ) ( 2 K + 1 ) = 2 K K ! ( 1 3 5 ( 2 K + 1 ) ) (2K + 1)! = 1 * 2 * 3 * * * (2K) * (2K + 1) = 2^K * K! * (1 * 3 * 5 * * * (2K + 1)) \implies 1 3 5 ( 2 K + 1 ) = ( 2 K + 1 ) ! 2 K K ! 1 * 3 * 5 * * * (2K + 1) = \dfrac{(2K + 1)!}{2^K * K!}

and,

Using Γ ( p ) = Γ ( p + 1 ) p \Gamma(p) = \dfrac{\Gamma(p + 1)}{p} and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

T 0 = Γ ( 1 2 ) = 2 Γ ( 1 2 ) = 2 π = ( 3 2 ) ! T_{0} = \Gamma(-\dfrac{1}{2}) = -2\Gamma(\dfrac{1}{2}) = -2\sqrt{\pi} = (-\dfrac{3}{2})!

T 1 = Γ ( 3 2 ) = 2 3 Γ ( 1 2 ) = 2 2 1 3 π = ( 5 2 ) ! T_{1} = \Gamma(-\dfrac{3}{2}) = -\dfrac{2}{3}\Gamma(-\dfrac{1}{2}) = \dfrac{2^2}{1 * 3}\sqrt{\pi} = (-\dfrac{5}{2})!

T 2 = Γ ( 5 2 ) = 2 5 Γ ( 3 2 ) = 2 3 1 3 5 π = ( 7 2 ) ! T_{2} = \Gamma(-\dfrac{5}{2}) = -\dfrac{2}{5}\Gamma(-\dfrac{3}{2}) = -\dfrac{2^3}{1 * 3 * 5}\sqrt{\pi} = (-\dfrac{7}{2})!

In General:

T K = Γ ( K 1 2 ) = ± 2 K + 1 π 1 3 5 ( 2 K + 1 ) = ( K 3 2 ) ! T_{K} = \Gamma(-K -\dfrac{1}{2}) = \pm\dfrac{2^{K + 1}\sqrt{\pi}}{1 * 3 * 5 * * * (2K + 1)} = (-K -\dfrac{3}{2})!

( K 3 2 ) ! = ± 2 2 K + 1 K ! π ( 2 K + 1 ) ! \implies (-K - \dfrac{3}{2})! = \pm\dfrac{2^{2K + 1} * K!\sqrt{\pi}}{(2K + 1)!} , where K K is a non-negative integer

\implies

S K T K = S_{K} * T_{K} = { π for K odd π for K even \begin{cases} \pi & \text{for} \:\ K \:\ \text{odd}\\ -\pi & \text{for} \:\ K \:\ \text{even}\\ \end{cases}

n \therefore n odd \implies K = 0 n ( ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! ) = K = 0 n S K T K = 0 \displaystyle\sum_{K = 0}^{n} \left(\left(\frac{2K + 1}{2}\right)! \left(\frac{-2K - 3}{2}\right)!\right) = \displaystyle\sum_{K = 0}^{n} S_{K} * T_{K} = \boxed{0} .

Note: It follows that n n even K = 0 n ( ( 2 K + 1 2 ) ! ( 2 K 3 2 ) ! ) = π \implies \displaystyle\sum_{K = 0}^{n} \left(\left(\frac{2K + 1}{2}\right)! \left(\frac{-2K - 3}{2}\right)!\right) = -\pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...