If n is a odd positive integer, find K = 0 ∑ n ( ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using the property that r ! = r ( r − 1 ) ! for any r ∈ R ∖ { 0 , − 1 , − 2 , − 3 , … } , ( 2 2 ( K + 1 ) + 1 ) ! ( 2 − 2 ( K + 1 ) − 3 ) ! = ( 2 2 K + 3 ) ! ( 2 − 2 K − 3 − 1 ) ! = ( 2 2 K + 3 ) ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 1 ) ( 2 − 2 K − 3 ) ! = ( − 1 ) ⋅ ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! which we can use as the inductive step to show for non-negative integral K that ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! = ( − 1 ) K ( 2 1 ) ! ( − 2 3 ) !
Then K = 0 ∑ n ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! = K = 0 ∑ n ( − 1 ) K ( 2 1 ) ! ( − 2 3 ) ! = { 0 ( 2 1 ) ! ( − 2 3 ) ! if n is odd if n is even
Since we're told n is odd, the answer is 0
Using the gamma function Γ ( p ) = ∫ 0 ∞ t p − 1 e − t d t we obtain:
Γ ( 2 1 ) = ∫ 0 ∞ t − 2 1 e − t d t
Let s 2 = t ⟹ 2 s d s = d t ⟹
Γ ( 2 1 ) = 2 ∫ 0 ∞ e − s 2 d s
Since s is a dummy variable we can write:
( Γ ( 2 1 ) ) 2 = 4 ∫ 0 ∞ e − x 2 d x ∫ 0 ∞ e − y 2 d y = 4 ∫ 0 ∞ ∫ 0 ∞ e − ( x 2 + y 2 ) d x d y
Let x = r cos θ , y = r sin θ
Using the Jacobian ⟹ ( Γ ( 2 1 ) ) 2 = 4 ∫ 0 2 π ∫ 0 ∞ e − r 2 r d r d θ = − 2 ∫ 0 2 π e − r 2 ∣ 0 ∞ d θ = 2 ∫ 0 2 π d θ = π ⟹ Γ ( 2 1 ) = π
Now, using integration by parts you can show that Γ ( p + 1 ) = p Γ ( p )
Show Γ ( 1 ) = 1 and recursively using Γ ( p + 1 ) = p Γ ( p ) ⟹ Γ ( p + 1 ) = p ! for any integer p ≥ 0 and p can be extended to reals so that Γ ( 2 1 ) = Γ ( 2 − 1 + 1 ) = π = ( 2 − 1 ) !
Using Γ ( p + 1 ) = p Γ ( p ) and Γ ( 2 1 ) = π = ( 2 − 1 ) !
⟹
S 0 = Γ ( 2 3 ) = 2 1 ∗ Γ ( 2 1 ) = 2 π = ( 2 1 ) !
S 1 = Γ ( 2 5 ) = 2 3 ∗ Γ ( 2 3 ) = 2 2 1 ∗ 3 ∗ π = ( 2 3 ) !
S 2 = Γ ( 2 7 ) = 2 5 ∗ Γ ( 2 5 ) = 2 3 1 ∗ 3 ∗ 5 ∗ π = ( 2 5 ) !
In General:
S K = Γ ( 2 2 K + 3 ) = 2 K + 1 1 ∗ 3 ∗ 5 ∗ ∗ ∗ ( 2 K + 1 ) ∗ π = ( K + 2 1 ) !
⟹ ( K + 2 1 ) ! = 2 2 K + 1 ∗ K ! ( 2 K + 1 ) ! ∗ π , where K is a non-negative integer.
Note: ( 2 K + 1 ) ! = 1 ∗ 2 ∗ 3 ∗ ∗ ∗ ( 2 K ) ∗ ( 2 K + 1 ) = 2 K ∗ K ! ∗ ( 1 ∗ 3 ∗ 5 ∗ ∗ ∗ ( 2 K + 1 ) ) ⟹ 1 ∗ 3 ∗ 5 ∗ ∗ ∗ ( 2 K + 1 ) = 2 K ∗ K ! ( 2 K + 1 ) !
and,
Using Γ ( p ) = p Γ ( p + 1 ) and Γ ( 2 1 ) = π = ( 2 − 1 ) !
⟹
T 0 = Γ ( − 2 1 ) = − 2 Γ ( 2 1 ) = − 2 π = ( − 2 3 ) !
T 1 = Γ ( − 2 3 ) = − 3 2 Γ ( − 2 1 ) = 1 ∗ 3 2 2 π = ( − 2 5 ) !
T 2 = Γ ( − 2 5 ) = − 5 2 Γ ( − 2 3 ) = − 1 ∗ 3 ∗ 5 2 3 π = ( − 2 7 ) !
In General:
T K = Γ ( − K − 2 1 ) = ± 1 ∗ 3 ∗ 5 ∗ ∗ ∗ ( 2 K + 1 ) 2 K + 1 π = ( − K − 2 3 ) !
⟹ ( − K − 2 3 ) ! = ± ( 2 K + 1 ) ! 2 2 K + 1 ∗ K ! π , where K is a non-negative integer
⟹
S K ∗ T K = { π − π for K odd for K even
∴ n odd ⟹ K = 0 ∑ n ( ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! ) = K = 0 ∑ n S K ∗ T K = 0 .
Note: It follows that n even ⟹ K = 0 ∑ n ( ( 2 2 K + 1 ) ! ( 2 − 2 K − 3 ) ! ) = − π .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Gamma Function
S = k = 0 ∑ n ( 2 2 k + 1 ) ! ( − 2 2 k + 3 ) ! = k = 0 ∑ n Γ ( 2 2 k + 3 ) Γ ( − 2 2 k + 1 ) = k = 0 ∑ n − 2 2 k + 1 Γ ( 2 2 k + 1 ) sin ( 2 2 k + 1 π ) Γ ( 2 2 k + 3 ) π = k = 0 ∑ n sin ( 2 2 k + 1 π ) − π = k = 0 ∑ n ( − 1 ) n + 1 π = { − π 0 if n is even. if n is odd. Gamma function Γ ( x + 1 ) = x ! Note that Γ ( x ) Γ ( − x ) = − x sin ( π x ) π also Γ ( 1 + x ) = z Γ ( x ) Since sin ( 2 2 k + 1 π ) = { 1 − 1 if x is even. if x is odd.