It's a long equation

Algebra Level 4

If S S is the sum of all real x x satisfying

( 6 x 3 ) 7 3 x + ( 15 6 x ) 3 x 2 = 2 9 x 2 + 27 x 14 + 11 , \left( 6x-3 \right) \sqrt { 7-3x } +\left( 15-6x \right) \sqrt { 3x-2 } =2\sqrt { -9{ x }^{ 2 }+27x-14 } +11,

what is the value of S S ?

7 3 4 \frac { 3 }{ 4 } 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 26, 2017

( 6 x 3 ) 7 3 x + ( 15 6 x ) 3 x 2 = 2 9 x 2 + 27 x 14 + 11 ( 6 x 4 + 1 ) 7 3 x + ( 1 + 14 6 x ) 3 x 2 = 3 x 2 + 2 ( 3 x 2 ) ( 7 3 x ) + 7 3 x + 6 Let a = 3 x 2 , b = 7 3 x 2 a 2 b + b + a + 2 b 2 a = a 2 + 2 a b + b 2 + 6 Note that a 2 + b 2 = 5 2 a b ( a + b ) + a + b = ( a + b ) 2 + 6 ( ( a + b ) 2 5 ) ( a + b ) + a + b = ( a + b ) 2 + 6 ( a + b ) 3 4 ( a + b ) = ( a + b ) 2 + 6 ( a + b ) 3 ( a + b ) 2 4 ( a + b ) 6 = 0 ( ( a + b ) 3 ) ( ( a + b ) 2 + 2 ( a + b ) + 2 ) = 0 a + b = 3 ( a + b ) 2 = 9 5 + 2 a b = 9 2 a b = 4 a 2 b 2 = 4 9 x 2 + 27 x 14 = 4 9 x 2 27 x + 18 = 0 x 2 3 x + 2 = 0 ( x 1 ) ( x 2 ) = 0 x = { 1 2 \begin{aligned} (6x-3)\sqrt{7-3x} + (15-6x)\sqrt{3x-2} & = 2\sqrt{-9x^2+27x-14} + 11 \\ (6x-4+1)\sqrt{7-3x} + (1+14-6x)\sqrt{3x-2} & = 3x -2 + 2\sqrt{(3x-2)(7-3x)} +7-3x + 6 & \small \color{#3D99F6} \text{Let }a = \sqrt{3x-2}, \ b=\sqrt{7-3x} \\ 2a^2b + b + a + 2b^2a & = {\color{#3D99F6}a^2 + 2ab+b^2} + 6 & \small \color{#3D99F6} \text{Note that } a^2+b^2 = 5 \\ {\color{#3D99F6}2ab}(a+b) + a+b & = (a+b)^2 + 6 \\ {\color{#3D99F6}\left((a+b)^2 -5 \right)}(a+b) + a+b & = (a+b)^2 + 6 \\ (a+b)^3 - 4(a+b) & = (a+b)^2 + 6 \\ (a+b)^3 - (a+b)^2 - 4(a+b) - 6 & = 0 \\ \left((a+b)-3\right) \left( (a+b)^2+ 2(a+b)+2\right) & = 0 \\ \implies a+b & = 3 \\ (a+b)^2 & = 9 \\ 5+2ab & = 9 \\ 2ab & = 4 \\ a^2b^2 & = 4 \\ -9x^2+27x-14 & = 4 \\ 9x^2-27x +18 & = 0 \\ x^2-3x+2 & = 0 \\ (x-1)(x-2) & = 0 \\ \implies x & = \begin{cases} 1 \\ 2 \end{cases} \end{aligned}

S = 1 + 2 = 3 \implies S = 1+2=\boxed{3}

Is that a = 7 3 x , b = 3 x 2 a=\sqrt { 7-3x } , b=\sqrt { 3x-2 } ? There might be a typo mistake on the line 2, Mr. Chew-Seong

Linkin Duck - 4 years, 2 months ago

Log in to reply

Thanks. They were typos.

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...