It's a Special Angle

Geometry Level 4

In A B C , A C = r 1 a , A B = r 2 a \triangle{ABC}, \overline{AC} = r_{1}a, \overline{AB} = r_{2}a and B C = r 3 a \overline{BC} = r_{3}a and the point P P is the centroid of A B C \triangle{ABC} .

Let Q P = h QP = h be the height of the tetrahedron.

Find the value of a a and h h that minimizes the triangular face Q A C QAC .

Find m Q D P = θ m\angle{QDP} = \theta (in degrees) and express the result to seven decimal places.


The answer is 54.7356103.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 27, 2018

Let m B A C = ω m\angle{BAC} = \omega .

A A B C = 1 2 r 1 r 2 sin ( ω ) a 2 A_{\triangle{ABC}} = \dfrac{1}{2}r_{1}r_{2}\sin(\omega)a^2 and P D = r 2 sin ( ω ) 3 a PD = \dfrac{r_{2}\sin(\omega)}{3}a

Q D = 9 h 2 + r 2 2 sin 2 ( ω ) a 2 3 A = A Q D C = \overline{QD} = \dfrac{\sqrt{9h^2 + r_{2}^2\sin^2(\omega)a^2}}{3} \implies A = A_{\triangle{QDC}} = r 1 6 a 9 h 2 + r 2 2 sin 2 ( ω ) a 2 \dfrac{r_{1}}{6}a\sqrt{9h^2 + r_{2}^2\sin^2(\omega)a^2}

The volume V = 1 6 ( r 2 r 2 sin ( ω ) ) a 2 h = K h = 6 k ( r 1 r 2 sin ( ω ) ) a 2 V = \dfrac{1}{6}(r_{2}r_{2}\sin(\omega))a^2h = K \implies h = \dfrac{6k}{(r_{1}r_{2}\sin(\omega))a^2} \implies A ( a ) = 324 k 2 + r 1 2 r 2 4 sin 4 ( ω ) a 6 6 r 2 a sin ( ω ) A(a) = \dfrac{\sqrt{324k^2 + r_{1}^2 r_{2}^4\sin^4(\omega)a^6}}{6r_{2}a\sin(\omega)} \implies

d A d a = r 1 2 r 2 4 sin 4 ( ω ) a 6 162 k 2 ( 3 r 2 sin ( ω ) ) 324 k 2 + r 1 2 r 2 4 sin 4 ( ω ) a 6 a 2 = 0 \dfrac{dA}{da} = \dfrac{r_{1}^2 r_{2}^4\sin^4(\omega)a^6 - 162k^2}{(3r_{2}\sin(\omega))\sqrt{324k^2 + r_{1}^2 r_{2}^4\sin^4(\omega)a^6}a^2} = 0 a = ( 9 2 k r 1 r 2 2 sin 2 ( ω ) ) 1 3 h = 6 k r 1 r 2 sin ( ω ) ( r 1 r 2 2 sin 2 ( ω ) 9 2 k ) 2 3 \implies a = (\dfrac{9\sqrt{2}k}{r_{1}r_{2}^2\sin^2(\omega)})^{\frac{1}{3}} \implies h = \dfrac{6k}{r_{1}r_{2}\sin(\omega)}(\dfrac{r_{1}r_{2}^2\sin^2(\omega)}{9\sqrt{2}k})^{\frac{2}{3}}

h a = 2 r 2 sin ( ω ) 3 \dfrac{h}{a} = \dfrac{\sqrt{2}r_{2}\sin(\omega)}{3} tan ( θ ) = 3 r 2 sin ( ω ) ( h a ) = 2 θ 54.7356103 \implies \tan(\theta) = \dfrac{3}{r^2\sin(\omega)}(\dfrac{h}{a}) = \sqrt{2} \implies \theta \approx \boxed{54.7356103}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...