A semicircle is inscribed in square A B C D as shown above and B F is tangent to the semicircle at point E .
Find A B B F .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a be the length of a side of the square A B C D .
( x − 2 a ) 2 + y 2 = 2 a 2 ⟹ 4 ( 2 x − a ) 2 + y 2 = 4 a 2 ⟹
x 2 − a x + y 2 = 0 ⟹ y = x ( a − x )
m B E = x x ( a − x ) − a ⟹ m ⊥ = m P E = 2 x − a 2 x ( a − x ) =
− x ( a − x ) − a x ⟹ 2 a x − 2 x 2 − 2 a x ( a − x ) = a x − 2 x 2 ⟹
x = 2 x ( a − x ) ⟹ x 2 = 4 a x − 4 x 2 ⟹ x ( 4 a − 5 x ) = 0 and x = 0
⟹ x = 5 4 a ⟹ y = 5 2 a
Using E : ( 5 4 a , 5 2 a ) and B : ( 0 , a ) ⟹ m B E = − 4 3 ⟹ y = − 4 3 x + a
Using line x = a ⟹ y = 4 a and using F : ( a , 4 a ) and B : ( 0 , a ) ⟹
B F = 1 6 2 5 a 2 = 4 5 a ⟹ A B B F = 4 5 = 1 . 2 5
Problem Loading...
Note Loading...
Set Loading...
Let the length of each side of the square be 2 a and the angle ∠ F B C be α . Let the center of the semicircle be O . Then ∠ D O F = 4 5 ° − 2 α . ∣ B E ∣ = ∣ A B ∣ = 2 a , ∣ E F ∣ = ∣ F D ∣ . Now tan ( 4 5 ° − 2 α ) = ∣ O D ∣ ∣ F D ∣ ⟹ tan ( 2 α ) = ∣ A B ∣ + 2 ∣ F D ∣ ∣ A B ∣ − 2 ∣ F D ∣ , and tan α = ∣ A B ∣ ∣ C F ∣ = 1 − ∣ A B ∣ ∣ F D ∣ . From these we get 3 tan 3 ( 2 α ) + 5 tan 2 ( 2 α ) + tan ( 2 α ) − 1 = 0 ⟹ tan ( 2 α ) = 3 1 ⟹ tan ( 4 5 ° − 2 α ) = 2 1 ⟹ ∣ E F ∣ = ∣ F D ∣ = 2 a ⟹ ∣ B F ∣ = ∣ B E ∣ + ∣ E F ∣ = 2 a + 2 a = 2 5 a . Hence ∣ A B ∣ ∣ B F ∣ = 2 × 2 a 5 a = 4 5 = 1 . 2 5