It's a Trap!

Calculus Level 4

P = n = 1 n ! e n ! e 1 \large P = \prod_{n=1}^{ \infty}\dfrac{\lfloor n!e \rfloor} {\lfloor n!e - 1\rfloor}

What is ln ( P ) \ln(P) ?

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P = n = 1 n ! e n ! e 1 By Maclaurin series = n = 1 n ! k = 0 1 k ! n ! k = 0 1 k ! 1 = n = 1 k = 0 n n ! k ! k = 0 n n ! k ! 1 = n = 1 ( 1 + 1 k = 0 n n ! k ! 1 ) = n = 1 ( 1 + 1 k = 0 n 1 n ! k ! ) Since a n = k = 0 n 1 n ! k ! satisfies = n = 1 ( 1 + 1 a n ) a n = n ( a n 1 + 1 ) = e See note below, \begin{aligned} P & = \prod_{n=1}^\infty \frac {\lfloor n! {\color{#3D99F6} e} \rfloor}{\lfloor n!{\color{#3D99F6} e}-1\rfloor} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \prod_{n=1}^\infty \frac {\left \lfloor n! {\color{#3D99F6} \sum_{k=0}^\infty \frac 1{k!}} \right \rfloor}{\left \lfloor n!{\color{#3D99F6} \sum_{k=0}^\infty \frac 1{k!}}-1 \right \rfloor} \\ & = \prod_{n=1}^\infty \frac {\sum_{k=0}^n \frac {n!}{k!}}{\sum_{k=0}^n \frac {n!}{k!}-1} \\ & = \prod_{n=1}^\infty \left(1+\frac 1{\sum_{k=0}^n \frac {n!}{k!}-1} \right) \\ & = \prod_{n=1}^\infty \left(1+\frac 1{\color{#3D99F6}\sum_{k=0}^{n-1} \frac {n!}{k!}} \right) & \small \color{#3D99F6} \text{Since }a_n = \sum_{k=0}^{n-1} \frac {n!}{k!} \text{ satisfies} \\ & = \prod_{n=1}^\infty \left(1+\frac 1{\color{#3D99F6}a_n} \right) & \small \color{#3D99F6} a_n = n(a_{n-1}+1) \\ & = e & \small \color{#3D99F6} \text{See note below,} \end{aligned}

Therefore ln P = 1 \ln P = \boxed 1 .


Note: If a n a_n satisfies the recurrent relation a n = n ( a n 1 + 1 ) a_n = n(a_{n-1}+1) and a 1 = a 1 a_1 = a^{-1} , then n = 1 ( 1 + a n 1 ) = e \displaystyle \prod_{n=1}^\infty (1+a_n^{-1}) = e . See reference (equations (24) and (25)) . Now let us check if a n = k = 0 n 1 n ! k ! \displaystyle a_n = \sum_{k=0}^{n-1} \frac {n!}{k!} satisfies the recurrent relation.

For n = 1 n=1 , a 1 = k = 0 1 1 n ! k ! = 1 ! 0 ! = 1 \displaystyle a_1 = \sum_{k=0}^{1-1} \frac {n!}{k!} = \frac {1!}{0!} = 1 and n = 2 n=2 , a 2 = 2 ! 0 ! + 2 ! 1 ! = 4 = 2 ( a 1 + 1 ) \displaystyle a_2 = \frac {2!}{0!} + \frac {2!}{1!} = 4 = 2(a_1 + 1) so the claim is true for n = 2 n=2 . Assuming the claim is true for n n , then a n + 1 = k = 0 n ( n + 1 ) ! k ! = ( n + 1 ) k = 0 n 1 n ! k ! + ( n + 1 ) n ! n ! = ( n + 1 ) ( a n + 1 ) \displaystyle a_{n+1} = \sum_{k=0}^n \frac {(n+1)!}{k!} = (n+1) \sum_{k=0}^{n-1} \frac {n!}{k!} + (n+1)\frac {n!}{n!} = (n+1)(a_n + 1) . Therefore, the claim is also true for n + 1 n+1 and hence true for all n 1 n \ge 1 .

This is a really beautiful and well written solution imo :)

Roberto Nicolaides - 2 years, 8 months ago

Log in to reply

Nice problem. Glad that you like the solution. When was the problem posted?

Chew-Seong Cheong - 2 years, 8 months ago

Log in to reply

I think it must be about 3 or 4 years ago now. This is the first contact I’ve had with brilliant in a long time. I should probably interact more.

Roberto Nicolaides - 2 years, 8 months ago
Otto Bretscher
Oct 7, 2018

I started out like Cde Cheong but took a different turn after his third line.

P N = n = 1 N k = 0 n n ! k ! k = 0 n n ! k ! 1 = n = 1 N k = 0 n n ! k ! k = 0 n 1 n ! k ! = n = 1 N k = 0 n 1 k ! k = 0 n 1 1 k ! = k = 0 N 1 k ! . \Large P_N =\prod_{n=1}^N\frac{\sum_{k=0}^n\frac{n!}{k!}}{\sum_{k=0}^n\frac{n!}{k!}-1}= \prod_{n=1}^N\frac{\sum_{k=0}^n\frac{n!}{k!}}{\sum_{k=0}^{n-1}\frac{n!}{k!}}=\prod_{n=1}^N\frac{\sum_{k=0}^n\frac{1}{k!}}{\sum_{k=0}^{n-1}\frac{1}{k!}}= \sum_{k=0}^{N}\frac{1}{k!}. In the last equation, we make use of a telescoping product.

Now P = lim N P N = e P=\lim_{N\to\infty}P_N = e and ln ( P ) = 1 \ln(P)=\boxed1

Oh this is really nice :)

Roberto Nicolaides - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...