It's A Very Useful Identity For Integration

Geometry Level 2

1 + cos 2 θ 1 cos 2 θ \large \dfrac{1 + \cos 2\theta}{1-\cos 2\theta}

Simplify the trigonometric function above.

cot 2 θ \cot^2\theta csc 2 θ \csc^2\theta sin 2 θ \sin^2\theta tan 2 θ \tan^2\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Proving Trigonometric Identites

1 + cos 2 θ 1 cos 2 θ = 1 + 2 cos 2 θ 1 1 1 + 2 sin 2 θ = 2 cos 2 θ 2 sin 2 θ = cot 2 θ \begin{aligned} \frac{1+\cos 2\theta}{1 - \cos 2\theta} & = \frac{1+2 \cos^2 \theta - 1}{1-1+2 \sin^2 \theta} \\ & = \frac{2\cos^2 \theta}{2 \sin^2 \theta} \\ & = \boxed{\cot^2 \theta} \end{aligned}

Wonderful simplicity.

Same solution, great!!

Novril Razenda - 4 years, 11 months ago

Same method, just a longer approach.

Mehul Arora - 4 years, 11 months ago

1 + cos ( 2 θ ) 2 2 1 cos ( 2 θ ) \frac{1+\cos(2\theta)}{2} \cdot \frac{2}{1-\cos(2\theta)} = cos 2 ( θ ) sin 2 ( θ ) = cot 2 ( θ ) = \frac{\cos^2(\theta)}{\sin^2(\theta)}=\cot^2(\theta)

cot = cos/sin. Look at what you have written ;)

JPaytheboss . - 5 years ago
Novril Razenda
Jul 1, 2016

Relevant wiki: Proving Trigonometric Identities - Basic

1 + cos 2 θ 1 cos 2 θ = s i n 2 θ + c o s 2 θ + cos 2 θ s i n 2 θ s i n 2 θ + c o s 2 θ cos 2 θ + s i n 2 θ = 2 cos 2 θ 2 sin 2 θ = cot 2 θ \begin{aligned} \frac{1+\cos 2\theta}{1 - \cos 2\theta} & = \frac{sin^2\theta+cos^2\theta+ \cos^2 \theta - sin^2\theta}{sin^2\theta+cos^2\theta- \cos^2 \theta +sin^2\theta } \\ & = \frac{2\cos^2 \theta}{2 \sin^2 \theta} \\ & = \boxed{\cot^2 \theta} \end{aligned}

Very nice and simple!

Pi Han Goh - 4 years, 11 months ago

Log in to reply

@Pi Han Goh Thanks :)

Novril Razenda - 4 years, 11 months ago

Use the double angle identity for cos 2 θ \cos 2 \theta and simplify. You get the answer as cot 2 θ \cot^2 \theta .

@Svatejas Shivakumar , since I solved it the same way, I would urge you to post a complete solution instead of hinting the reader about which direction to go ;)

Mehul Arora - 4 years, 11 months ago

Log in to reply

I solved it the same way as chew seong cheong sir. So no need to post the solution.

A Former Brilliant Member - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...