it's AGP (Arithmetico-Geometric Progression)

Algebra Level 1

Find the value of p p given

3 + 1 4 ( 3 + p ) + 1 4 2 ( 3 + 2 p ) + 1 4 3 ( 3 + 3 p ) + = 8. 3+\dfrac{1}{4}(3+p)+\dfrac{1}{4^{2}}(3+2p)+\dfrac{1}{4^3}(3+3p)+\cdots =8.

1 5 7 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Oct 3, 2014

it becomes

3( 1 + 1 4 + 1 4 2 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4} + \frac{1}{4^{2}} ....................... ) + p ( 1 4 + 2 4 2 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4} + \frac{2}{4^{2}} ....................... )

now let the 2nd series be equal to x

therefore,

x= ( 1 4 + 2 4 2 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4} + \frac{2}{4^{2}} ....................... )

x 4 \frac{x}{4} = ( 1 4 2 + 2 4 3 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4^{2}} + \frac{2}{4^{3}} ....................... )

then

x - x 4 \frac{x}{4} = ( 1 4 + 1 4 2 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4} + \frac{1}{4^{2}} ....................... )

therefore x = 4/3( 1 4 + 1 4 2 . . . . . . . . . . . . . . . . . . . . . . . \frac{1}{4} + \frac{1}{4^{2}} ....................... )

and we know the sum of an G.P

then finally it comes

4 + 4 P 9 \frac{4P}{9} = 8

thus P=9

I did it the same way . Nice problem @Sandeep Bhardwaj

Shubhendra Singh - 6 years, 8 months ago

Nice solution Sir,

But I could not understand , Can we equate the second series to x , I dont know about this method please help me little more !

I did the question by using infinity formula for Arithmetic-Geometric Series :D

Thank you,

Upvoted

Syed Baqir - 5 years, 9 months ago
Cleres Cupertino
Aug 14, 2015

There is an outstanding expression that rules this kind of series,

S = a 1 r + d r ( 1 r ) 2 r < 1 S=\dfrac{a}{1-r}+\dfrac{dr}{{(1-r)^2}} \quad \quad |r|<1

To the sequences that look like,

a , ( a + d ) r , ( a + 2 d ) r 2 , ( a + 3 d ) r 3 , , [ a + ( n 1 ) d ] r n 1 , a , (a+d) r , (a+2d) r^2 , (a+3d)r^3, \ldots , \left[ a + (n-1) d \right] r^{n-1},\ldots

In this particular case a = 3 a=3 , d = p d=p and r = 1 4 r=\frac 14 ,

3 1 1 4 + p 4 ( 1 1 4 ) 2 = 8 4 + 4 p 9 = 8 36 + 4 p = 72 p = 9 \dfrac 3{1-\dfrac 14} + \dfrac {\dfrac p4}{\left( 1- \dfrac14 \right)^2} =8 \Leftrightarrow 4+\dfrac {4p}9 =8 \Leftrightarrow 36+4p=72 \Leftrightarrow \boxed{p=9} \square

References

I did same method :D

Syed Baqir - 5 years, 9 months ago
Devkant Chouhan
Nov 5, 2014

I also did the same way

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...