It's all about Areas!

Geometry Level 4

In rectangle A B C D ABCD with diagonal B D \overline{BD} , let I I be a midpoint of A D \overline{AD} and let E I \overline{EI} and F I \overline{FI} trisect B C \overline{BC} .

Let A R A_{R} be the area of the red shaded region.

If A R A A B C D = α β \dfrac{A_{R}}{A_{ABCD}} = \dfrac{\alpha}{\beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pi Han Goh
Dec 11, 2020

Without the loss of generality, let the dimensions of this rectangle be h × 6 h\times 6 . Then plot this figure onto the Cartesian plane. The equation of the straight line B D BD is x / 6 + y / h = 1 x/6 + y/h = 1 . The equation of the straight line E I EI is y 0 x 3 = h 0 2 3 y = h ( x 3 ) \frac{y-0}{x-3} = \frac{h-0}{2-3} \Leftrightarrow y = -h(x-3) . Likewise, the equation of the straight line E F EF is y 0 x 3 = h 0 4 3 y = h ( x 3 ) \frac{y-0}{x-3} = \frac{h-0}{4-3} \Leftrightarrow y = h(x-3) . The coordinate of G G is simply the intersection point of the straight lines B D BD and E I EI . In other words, we need to solve a system of equations { x / 6 + y / h = 1 y = h ( x 3 ) G = ( 12 / 5 , 3 h / 5 ) \begin{cases} x/6 + y/h= 1 \\ y = -h(x-3) \end{cases} \implies G = (12/5, 3h/5) Analogously, we get H = ( 24 / 7 , 3 h / 7 ) . H = (24/7, 3h/7) . Using the shoelace formula, the area of the triangle G H I GHI is: 1 2 3 24 / 7 12 / 5 3 0 3 h / 5 3 h / 7 0 = 1 2 [ ( 9 h 5 + 36 h 35 ) ( 72 h 35 + 9 h 7 ) ] = 9 h 35 \frac12 \begin{vmatrix}{3} && {24/7} && {12/5} && {3} \\ {0} && {3h/5} && {3h/7} && {0}\end{vmatrix} = \frac12 \left [\left(\frac{9h}5 + \frac{36h}{35} \right) - \left( \frac{72h}{35} + \frac{9h}7 \right) \right ] = \frac{9h}{35} Since the area of the rectangle is 6 h 6h , the ratio in question is 9 h 35 ÷ 6 h = 3 70 \frac{9h}{35} \div 6h = \frac3{70} . The answer is 3 + 70 = 73 . 3 + 70 = \boxed{73} .

Chew-Seong Cheong
Dec 12, 2020

Let the width and height of rectangle A B C D ABCD be w w and h h respectively, and G J = h 1 GJ=h_1 and H K = h 2 HK=h_2 are perpendicular to A D AD . We note that G I A = F I D = tan 1 h w 2 w 3 = tan 1 6 h w \angle GIA = \angle FID = \tan^{-1} \dfrac {h}{\frac w2 - \frac w3} = \tan^{-1} \dfrac {6h}w and B D A = tan 1 h w \angle BDA = \tan^{-1} \dfrac hw . Then we have:

J D = J I + I D G J cot B D A = G J cot G I A + w 2 h 1 w h = h 1 w 6 h + w 2 5 h 1 6 h = 1 2 h 1 = 3 5 h \begin{aligned} JD & = JI + ID \\ GJ \cdot \cot \angle BDA & = GJ \cdot \cot \angle GIA + \frac w2 \\ h_1 \cdot \frac wh & = h_1 \cdot \frac w{6h} + \frac w2 \\ \frac {5h_1}{6h} & = \frac 12 \\ \implies h_1 & = \frac 35 h \end{aligned}

Similarly,

I D = I K + K D w 2 = H K cot F I D + H K cot B D A w 2 = h 2 w 6 h + h 2 w h 1 2 = 7 h 2 6 h h 2 = 3 7 h \begin{aligned} ID & = IK + KD \\ \frac w2 & = HK \cdot \cot \angle FID + HK \cdot \cot \angle BDA \\ \frac w2 & = h_2 \cdot \frac w{6h} + h_2 \cdot \frac wh \\ \frac 12 & = \frac {7h_2}{6h} \\ \implies h_2 & = \frac 37 h \end{aligned}

Let the area of the rectangle [ A B C D ] = w h = 1 [ABCD]=wh = 1 . Then [ H I D ] = 1 2 w 2 3 h 7 = 3 28 [HID] = \dfrac 12 \cdot \dfrac w2 \cdot \dfrac {3h}7 = \dfrac 3{28} , [ B E G ] = 1 2 w 3 ( h 3 h 5 ) = 1 15 [BEG] = \dfrac 12 \cdot \dfrac w3 \left(h-\dfrac {3h}5 \right) = \dfrac 1{15} , and

[ G H I ] = [ A B D ] [ A B G I ] [ H I D ] = 1 2 w h ( [ A B E I ] [ B E G ] ) 3 28 = 1 2 ( w 3 + w 2 2 h 1 15 ) 3 28 = 1 2 5 12 + 1 15 3 28 = 3 70 [ G H I ] [ A B C D ] = 3 70 \begin{aligned} [GHI] & = [ABD] - [ABGI] - [HID] \\ & = \frac 12wh - ([ABEI] - [BEG]) - \frac 3{28} \\ & = \frac 12 - \left(\frac {\frac w3+\frac w2}2 \cdot h - \frac 1{15} \right) - \frac 3{28} \\ & = \frac 12 - \frac 5{12} + \frac 1{15} - \frac 3{28} = \frac 3{70} \\ \implies \frac {[GHI]}{[ABCD]} & = \frac 3{70} \end{aligned}

Therefore α + β = 3 + 70 = 73 \alpha + \beta = 3 + 70 = \boxed{73} .

Fletcher Mattox
Dec 11, 2020

I wanted to see if sympy could do the algebra for the general case, and almost got there, but ran into a python error I could not resolve, so I settled for a specific 3x2 rectangle. Here is an interactive demo of how the area ratio remains constant for the general rectangle. Just move the sliders.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from sympy.geometry import *

# pick arbitrary rectangle
width, height = 3, 2

# define rectangle ABCD
A = Point(0,0)
B = Point(A.x + width, A.y)
C = Point(A.x + width, A.y + width)
D = Point(A.x, A.y + width)
rectangle = Polygon(A, B, C, D)

# compute boundry points, EFG
dc = D.distance(C)
E = Point(D.x + dc/3, D.y)
F = Point(D.x + 2*dc/3, D.y)
G = Point(A.x + dc/2, A.y)

# compute line segments
DB = Segment(D, B)
EG = Segment(E, G)
FG = Segment(F, G)

# define triangle HGI
H = list(DB.intersect(EG))[0]
I = list(DB.intersect(FG))[0]
triangle = Triangle(H, G, I)

ratio = triangle.area/rectangle.area
solution = ratio.numerator() + ratio.denominator()
print("area triangle / area rectangle = ", ratio)
print("solution =", solution)

1
2
area triangle / area rectangle =  3/70
solution = 73

why is this ignored?

Rocco Dalto
Dec 11, 2020

Let A A B C D = a A_{ABCD} = a with B C = 1 \overline{BC} = 1 and A B = a \overline{AB} = a

First we will obtain h h^{*} and h h using B E G I G D \triangle{BEG} \sim \triangle{IGD} and B F H H I D \triangle{BFH} \sim \triangle{HID} , then using the diagram above with G P D A B D \triangle{GPD} \sim \triangle{ABD} and H Q D A B D \triangle{HQD} \sim\triangle{ABD} we obtain x x^{*} and x x .

h a h = 1 2 1 3 = 3 2 2 h = 3 a 3 h h = 3 a 5 \dfrac{h^{*}}{a - h^{*}} = \dfrac{\dfrac{1}{2}}{\dfrac{1}{3}} = \dfrac{3}{2} \implies 2h^{*} = 3a - 3h^{*} \implies h^{*} = \dfrac{3a}{5}

h a h = 1 2 2 3 = 3 4 4 h = 3 a 3 h h = 3 a 7 \dfrac{h}{a - h} = \dfrac{\dfrac{1}{2}}{\dfrac{2}{3}} = \dfrac{3}{4} \implies 4h = 3a - 3h \implies h = \dfrac{3a}{7}

Using G P D A B D a h = 1 x \triangle{GPD} \sim \triangle{ABD} \implies \dfrac{a}{h^{*}} = \dfrac{1}{x^{*}} \implies a x = h = 3 a 5 x = 3 5 ax^{*} = h^{*} = \dfrac{3a}{5} \implies x^{*} = \dfrac{3}{5} .

Using H Q D A B D a h = 1 x \triangle{HQD} \sim \triangle{ABD} \implies \dfrac{a}{h} = \dfrac{1}{x} \implies a x = h = 3 a 7 x = 3 7 ax = h = \dfrac{3a}{7} \implies x = \dfrac{3}{7}

A P = 1 3 5 = 2 5 P I = 1 2 2 5 = 1 10 \overline{AP} = 1 - \dfrac{3}{5} = \dfrac{2}{5} \implies \overline{PI} = \dfrac{1}{2} - \dfrac{2}{5} = \dfrac{1}{10} \implies

A G P I = 1 2 P I h = 1 2 ( 1 10 ) ( 3 a 5 ) = 3 a 100 A_{\triangle{GPI}} = \dfrac{1}{2}\overline{PI}h^{*} = \dfrac{1}{2}(\dfrac{1}{10})(\dfrac{3a}{5}) = \dfrac{3a}{100}

and

A H I D = 1 2 ( 1 2 ) h = 1 4 ( 3 a 7 ) = 3 a 28 A_{\triangle{HID}} = \dfrac{1}{2}(\dfrac{1}{2})h = \dfrac{1}{4}(\dfrac{3a}{7}) = \dfrac{3a}{28}

and

A G P D = 1 2 x h = 1 2 ( 3 5 ) ( 3 a 5 ) = 9 a 50 A_{\triangle{GPD}} = \dfrac{1}{2}x^{*}h^{*} = \dfrac{1}{2}(\dfrac{3}{5})(\dfrac{3a}{5}) = \dfrac{9a}{50}

\implies

A R = A G P D ( A H I D + A G P I ) = A_{R} = A_{\triangle{GPD}} - (A_{\triangle{HID}} + A_{\triangle{GPI}}) = 9 a 50 ( 3 a 28 + 3 a 100 ) = ( 9 50 24 175 ) a = \dfrac{9a}{50} - (\dfrac{3a}{28} + \dfrac{3a}{100}) = (\dfrac{9}{50} - \dfrac{24}{175})a =

3 70 a A R A A B C D = 3 70 = α β \dfrac{3}{70}a \implies \dfrac{A_{R}}{A_{ABCD}} = \dfrac{3}{70} = \dfrac{\alpha}{\beta} \implies α + β = 73 \alpha + \beta = \boxed{73} .

Below is an alternative approach using coordinate geometry: \textbf{Below is an alternative approach using coordinate geometry:}

Let A A B C D = a A_{ABCD} = a with B C = 1 \overline{BC} = 1 and C D = a \overline{CD} = a

m F I = 6 a y = 3 a ( 2 x 1 ) m_{FI} = 6a \implies y = 3a(2x - 1)

m B D = a y = a ( x 1 ) m_{BD} = - a \implies y = -a(x - 1)

3 ( 2 x 1 ) = ( x 1 ) 6 x 3 = x + 1 x = 4 7 \implies 3(2x - 1) = -(x - 1) \implies 6x - 3 = -x + 1 \implies x = \dfrac{4}{7} \implies

y = 3 a 7 = h H ( 4 7 , 3 a 7 ) y = \dfrac{3a}{7} = h \implies \boxed{H(\dfrac{4}{7}, \dfrac{3a}{7})}

m E I = 6 a y = 3 a ( 2 x 1 ) m_{EI} = -6a \implies y = -3a(2x - 1)

B D y = a ( x 1 ) \overleftrightarrow{\rm BD} y = -a(x - 1)

3 a ( 2 x 1 ) = a ( x 1 ) 6 x 3 = x 1 x = 2 5 y = 3 a 5 = h \implies 3a(2x - 1) = a(x - 1) \implies 6x - 3 = x - 1 \implies x = \dfrac{2}{5} \implies y = \dfrac{3a}{5} = h^{*}

G ( 2 5 , 3 a 5 ) \implies \boxed{G(\dfrac{2}{5}, \dfrac{3a}{5})}

P I = 1 2 2 5 = 1 10 \overline{PI} = \dfrac{1}{2} - \dfrac{2}{5} = \dfrac{1}{10} and I Q = 4 7 1 2 = 1 14 \overline{IQ} = \dfrac{4}{7} - \dfrac{1}{2} = \dfrac{1}{14}

A H I Q = 1 2 ( 1 14 ) ( 3 a 7 ) = 3 a 196 \implies A_{\triangle{HIQ}} = \dfrac{1}{2}(\dfrac{1}{14})(\dfrac{3a}{7}) = \dfrac{3a}{196}

and

A G P I = 1 2 ( 1 10 ) ( 3 a 5 ) = 3 a 100 A_{\triangle{GPI}} = \dfrac{1}{2}(\dfrac{1}{10})(\dfrac{3a}{5}) = \dfrac{3a}{100}

and

A P Q H G = 1 2 ( 3 a 7 + 3 a 5 ) ( 1 10 + 1 14 ) = A_{PQHG} = \dfrac{1}{2}(\dfrac{3a}{7} + \dfrac{3a}{5})(\dfrac{1}{10} + \dfrac{1}{14}) = 3 a 2 ( 12 35 ) ( 12 70 ) = 432 4900 a = 108 1225 a \dfrac{3a}{2}(\dfrac{12}{35})(\dfrac{12}{70}) = \dfrac{432}{4900}a = \dfrac{108}{1225}a

A R = A P Q H G ( A H I Q + A G P I ) = \implies A_{R} = A_{PQHG} - (A_{\triangle{HIQ}} + A_{\triangle{GPI}}) = ( 108 1225 ( 3 196 + 3 100 ) ) a = (\dfrac{108}{1225} - (\dfrac{3}{196} + \dfrac{3}{100}))a =

( 108 1225 111 2450 ) a = 3 70 a A R A A B C D = 3 70 = α β α + β = 73 (\dfrac{108}{1225} - \dfrac{111}{2450})a = \dfrac{3}{70}a \implies \dfrac{A_{R}}{A_{ABCD}} = \dfrac{3}{70} = \dfrac{\alpha}{\beta} \implies \alpha + \beta = \boxed{73}

.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...