It's All About Tangents.

Geometry Level 3

The parabola x 2 + 2 x y + y 2 + 2 x 2 y 3 = 0 x^2 + 2xy + y^2 + 2x - 2y - 3 = 0 is tangent to the circle x 2 + y 2 = 1 x^2 + y^2 = 1 at two points as shown above.

If the area A A of the region bounded by the above parabola and the circle can be expressed as A = c a b π a a A = \dfrac{c}{a * b} - \dfrac{\pi}{a^a} , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 9, 2019

To obtain graph below by using rotation equations to find angle \textbf{To obtain graph below by using rotation equations to find angle} θ \theta :

Using the equations of rotation for a rotation about the origin ( 0 , 0 ) : (0,0):

x = x cos ( θ ) y sin ( θ ) x = x'\cos(\theta) - y'\sin(\theta)

y = x sin ( θ ) + y cos ( θ ) y = x'\sin(\theta) + y'\cos(\theta)

Replacing x x and y y in x 2 + 2 x y + y 2 + 2 x 2 y 3 = 0 x^2 + 2xy + y^2 + 2x - 2y - 3 = 0 and finding θ \theta we obtain:

x 2 + y 2 + ( x 2 y 2 ) sin ( 2 θ ) + 2 cos ( 2 θ ) x y + 2 x ( cos ( θ ) sin ( θ ) ) 2 y ( sin ( θ ) + cos ( θ ) ) 3 = 0 x'^2 + y'^2 + (x'^2 - y'2)\sin(2\theta) + 2\cos(2\theta)x'y' + 2x'(\cos(\theta) - \sin(\theta)) -2y'(\sin(\theta) + \cos(\theta)) - 3 = 0

Setting x y x'y' term to zero we have cos ( 2 θ ) = 0 2 θ = π 2 θ = π 4 \cos(2\theta) = 0 \implies 2\theta = \dfrac{\pi}{2} \implies \theta = \dfrac{\pi}{4} .

2 x 2 2 2 y 3 = 0 y = 1 2 ( x 2 3 2 ) \implies 2x'^2 - 2\sqrt{2}y - 3 = 0 \implies \boxed{y' = \dfrac{1}{2}(x'^2 - \dfrac{3}{2})} .

Since any circle is invariant under a rotation about its center we can write: x 2 + y 2 = 1 x'^2 + y'^2 = 1

Solving the system x 2 + y 2 = 1 x'^2 + y'^2 = 1 and y = 1 2 ( x 2 3 2 ) y' = \dfrac{1}{2}(x'^2 - \dfrac{3}{2}) :

x 2 = 2 y + 3 2 2 y 2 + 2 2 y + 1 = 0 y = 1 2 x = ± 1 2 x'^2 = \sqrt{2}y' + \dfrac{3}{2} \implies 2y'^2 + 2\sqrt{2}y' + 1 = 0 \implies y' = -\dfrac{1}{\sqrt{2}} \implies x' = \pm\dfrac{1}{\sqrt{2}}

Using the bottom portion y 2 ( x ) = 1 x 2 y_{2}(x) = -\sqrt{1 - x'^2} of the circle and y 1 ( x ) = 1 2 ( x 2 3 2 ) y_{1}(x) = \dfrac{1}{2}(x'^2 - \dfrac{3}{2}) . the area A = A = 2 0 1 2 y 2 ( x ) y 1 ( x ) d x 2\displaystyle\int_{0}^{\dfrac{1}{\sqrt{2}}} y_{2}(x) - y_{1}(x) dx .

Letting x = sin ( θ ) d x = cos ( θ ) d θ x' = \sin(\theta) \implies dx' = \cos(\theta) d\theta \implies

A = 2 ( 1 2 0 π 4 ( 1 + cos ( 2 θ ) ) d θ 1 2 ( x 3 3 3 2 x ) 0 1 2 ) A = 2(-\dfrac{1}{2}\displaystyle\int_{0}^{\dfrac{\pi}{4}} (1 + \cos(2\theta)) d\theta - \dfrac{1}{\sqrt{2}} (\dfrac{x'^3}{3} - \dfrac{3}{2}x')|_{0}^{\frac{1}{\sqrt{2}}})

= 2 ( 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 4 + 2 3 ) = 2(-\dfrac{1}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{0}^{\frac{\pi}{4}} + \dfrac{2}{3})

= 5 6 π 4 = 5 2 3 π 2 2 = c a b π a a a + b + c = 10 = \dfrac{5}{6} - \dfrac{\pi}{4} = \dfrac{5}{2 * 3} - \dfrac{\pi}{2^2} = \dfrac{c}{a * b} - \dfrac{\pi}{a^a} \implies a + b + c = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...