Its all about the roots!

Algebra Level 3

Given that α \alpha and β \beta are the real roots of x 2 2 x 1 = 0 , x^2-2x-1=0, find the value of 5 α 4 + 12 β 3 5\alpha^4+12\beta^3 .


The answer is 169.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 29, 2017

Relevant wiki: Vieta's Formula - Quadratics - Basic

x 2 2 x 1 = 0 x 2 = 2 x + 1 x 3 = 2 x 2 + x = 2 ( 2 x + 1 ) + x x 3 = 5 x + 2 . . . ( 1 ) x 4 = 5 x 2 + 2 x = 5 ( 2 x + 1 ) + 2 x x 4 = 12 x + 5 . . . ( 2 ) \begin{aligned} x^2 - 2x-1 & = 0 \\ \implies x^2 & = 2x+1 \\ x^3 & = 2{\color{#3D99F6}x^2} + x = 2{\color{#3D99F6}(2x+1)} + x \\ \implies x^3 & = 5x+2 & ... (1) \\ x^4 & = 5{\color{#3D99F6}x^2} + 2x = 5{\color{#3D99F6}(2x+1)} + 2x \\ \implies x^4 & = 12x+5 & ...(2) \end{aligned}

Therefore we have:

5 α 4 + 12 β 3 = 5 ( 12 α + 5 ) ( 2 ) + 12 ( 5 β + 2 ) ( 1 ) = 60 α + 25 + 60 β + 24 = 60 ( α + β ) + 49 By Vieta’s formula α + β = 2 = 60 ( 2 ) + 49 = 169 \begin{aligned} 5{\color{#3D99F6}\alpha^4} + 12{\color{#D61F06}\beta^3} & = 5\underbrace{\color{#3D99F6}(12\alpha + 5)}_{(2)} + 12\underbrace{\color{#D61F06}(5\beta+2)}_{(1)} \\ & = 60 \alpha + 25 + 60 \beta + 24 \\ & = 60({\color{#3D99F6}\alpha + \beta}) + 49 & \small \color{#3D99F6} \text{By Vieta's formula }\alpha + \beta = 2 \\ & = 60({\color{#3D99F6}2}) + 49 \\ & = \boxed{169} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...