It's All Angles !

Level 2

In the diagram above, A B C D AB \cong CD and m A = 8 0 m\angle{A} = 80^{\circ} and m C = 2 0 m\angle{C} = 20^{\circ} .

Find m B D A = θ m\angle{BDA} = \theta (in degrees).


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A B = C D = x , B D = y |\overline {AB}|=|\overline {CD}|=x, |\overline {BD}|=y . Then

x sin θ = y sin 80 ° x y = sin θ sin 80 ° , x sin ( θ 20 ° ) = y sin 20 ° x y = sin ( θ 20 ° ) sin 20 ° \dfrac{x}{\sin \theta}=\dfrac{y}{\sin 80\degree}\implies \dfrac{x}{y}=\dfrac{\sin \theta}{\sin 80\degree}, \dfrac{x}{\sin (\theta-20\degree)}=\dfrac{y}{\sin 20\degree}\implies \dfrac{x}{y}=\dfrac{\sin (\theta-20\degree)}{\sin 20\degree} . This implies sin θ sin 20 ° = sin ( θ 20 ° ) sin 80 ° θ = tan 1 ( sin 20 ° sin 80 ° cos 20 ° sin 80 ° sin 20 ° ) = 30 ° \sin \theta\sin 20\degree=\sin (\theta-20\degree)\sin 80\degree\implies \theta=\tan^{-1} \left (\dfrac{\sin 20\degree\sin 80\degree}{\cos 20\degree\sin 80\degree-\sin 20\degree}\right) =\boxed {30\degree} .

Rocco Dalto
Mar 21, 2020

Using the law of cosines on A B C \triangle{ABC} with included angle C C we obtain:

x 2 = 2 l 2 ( 1 cos ( 2 0 ) ) = 4 l 2 sin 2 ( 1 0 ) x = 2 l sin ( 1 0 ) x^2 = 2l^2(1 - \cos(20^{\circ})) = 4l^2\sin^2(10^{\circ}) \implies x = 2l\sin(10^{\circ})

Using the law of cosines on B C D \triangle{BCD} with included angle C C we obtain:

b 2 = l 2 ( 1 + 4 sin 2 ( 1 0 ) 4 sin ( 1 0 ) cos ( 2 0 ) ) b^2 = l^2(1 + 4\sin^2(10^{\circ}) - 4\sin(10^{\circ})\cos(20^{\circ}))

Using law of sines on A B D \triangle{ABD} we obtain:

2 l sin ( 1 0 ) sin ( θ ) = b sin ( 8 0 ) \dfrac{2l\sin(10^{\circ})}{\sin(\theta)} = \dfrac{b}{\sin(80^{\circ})} \implies b = 2 l sin ( 1 0 ) sin ( 8 0 ) sin ( θ ) b = \dfrac{2l\sin(10^{\circ})\sin(80^{\circ})}{\sin(\theta)} \implies

b 2 = 4 l 2 sin 2 ( 1 0 ) sin 2 ( 8 0 ) sin 2 ( θ ) b^2 = \dfrac{4l^2\sin^2(10^{\circ})\sin^2(80^{\circ})}{\sin^2(\theta)} \implies

4 sin 2 ( 1 0 ) sin 2 ( 8 0 ) sin 2 ( θ ) = 1 + 4 sin 2 ( 1 0 ) 4 sin ( 1 0 ) cos ( 2 0 ) \dfrac{4\sin^2(10^{\circ})\sin^2(80^{\circ})}{\sin^2(\theta)} = 1 + 4\sin^2(10^{\circ}) - 4\sin(10^{\circ})\cos(20^{\circ}) \implies

sin 2 ( θ ) = 4 sin 2 ( 1 0 ) sin 2 ( 8 0 ) 1 + 4 sin 2 ( 1 0 ) 4 sin ( 1 0 ) cos ( 2 0 ) \sin^2(\theta) = \dfrac{4\sin^2(10^{\circ})\sin^2(80^{\circ})}{1 + 4\sin^2(10^{\circ}) - 4\sin(10^{\circ})\cos(20^{\circ})} \implies

sin ( θ ) = 2 sin ( 1 0 ) sin ( 8 0 ) 1 + 4 sin 2 ( 1 0 ) 4 sin ( 1 0 ) cos ( 2 0 ) = \sin(\theta) = \dfrac{2\sin(10^{\circ})\sin(80^{\circ})}{\sqrt{1 + 4\sin^2(10^{\circ}) - 4\sin(10^{\circ})\cos(20^{\circ})}} =

sin ( 2 0 ) 1 + 4 sin 2 ( 1 0 ) 4 sin ( 1 0 ) cos ( 2 0 ) = 0.5 θ = 3 0 \dfrac{\sin(20^{\circ})}{\sqrt{1 + 4\sin^2(10^{\circ}) - 4\sin(10^{\circ})\cos(20^{\circ})}} = 0.5 \implies \theta = \boxed{30^{\circ}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...