It's All Angles.

Geometry Level 3

In isosceles right A B C \triangle ABC , B D = 2 D C \overline{BD} = 2\overline{DC} and A E B \angle{AEB} and B E D \angle{BED} are right angles. Find angle λ \lambda (in degrees).


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Expand the figure, to form square A B F C ABFC . Denote the side length of the square by s s . A D AD extended meets C F CF at M M and B E BE extended meets A C AC at N N .

A B D \triangle ABD and A B D \triangle ABD are similar, thus, C M A B = D C B D = 1 2 \dfrac{CM}{AB}=\dfrac{DC}{BD}=\dfrac{1}{2} This gives C M = A B 2 = s 2 CM=\dfrac{AB}{2}=\dfrac{s}{2} , i.e. M M is the midpoint of C F CF .

A B N \triangle ABN and A C M \triangle ACM are right-angled, with one pair of congruent legs ( A B = A C AB=AC ) and one pair of congruent acute angles ( A B N = C A M \angle ABN=\angle CAM because they are acute angles with perpendicular sides). Hence, A B N A C M \triangle ABN\cong \triangle ACM thus, A N = C M AN=CM , i.e. . N N is the midpoint of A C AC .

Since N C M = N E M = 90 \angle NCM=\angle NEM=90{}^\circ , quadrilateral N C M E NCME is cyclic, thus, C E M = C N M \angle CEM=\angle CNM

But, N C = C M = s 2 NC=CM=\dfrac{s}{2} and N C M = 90 NCM=90{}^\circ , thus, N C M \triangle NCM is isosceles right triangle, hence, C N M = 45 \angle CNM=45{}^\circ

Consequently, λ = C N M = 45 \angle \lambda=\angle CNM=\boxed{45{}^\circ }

Another purely geometric solution, nice job!

David Vreken - 4 months, 1 week ago

Well done!

Dan Brabec - 4 months, 1 week ago

Log in to reply

Thank you!

Thanos Petropoulos - 4 months, 1 week ago
Rocco Dalto
Feb 1, 2021

Let A B = A C = 1 B C = 2 \overline{AB} = \overline{AC} = 1 \implies BC = \sqrt{2} \implies .

Using the above diagram B C = 2 = 3 y y = 2 3 B D = 2 2 3 BC = \sqrt{2} = 3y \implies y = \dfrac{\sqrt{2}}{3} \implies \overline{BD} = \dfrac{2\sqrt{2}}{3} and using

B E C 4 5 θ + 9 0 + α + 4 5 w = 18 0 λ = θ + w \triangle{BEC} \implies 45^{\circ} - \theta + 90^{\circ} + \alpha + 45^{\circ} - w = 180^{\circ} \implies \lambda = \theta + w .

Using the law of cosines on A B D \triangle{ABD} with included angle 9 0 θ 90^{\circ} - \theta \implies

A D 2 = 1 + 8 9 4 2 3 ( 1 2 ) A D = 5 3 \overline{AD}^2 = 1 + \dfrac{8}{9} - \dfrac{4\sqrt{2}}{3}(\dfrac{1}{\sqrt{2}}) \implies \overline{AD} = \dfrac{\sqrt{5}}{3} \implies

8 9 = 1 + 5 9 2 5 3 sin ( θ ) sin ( θ ) = 1 5 = A E \dfrac{8}{9} = 1 + \dfrac{5}{9} - \dfrac{2\sqrt{5}}{3}\sin(\theta) \implies \sin(\theta) = \dfrac{1}{\sqrt{5}} = \overline{AE} \implies

B E = cos ( θ ) = 2 5 E D = 5 3 1 5 = 2 3 5 \overline{BE} = \cos(\theta) = \dfrac{2}{\sqrt{5}} \implies \overline{ED} = \dfrac{\sqrt{5}}{3} - \dfrac{1}{\sqrt{5}} = \dfrac{2}{3\sqrt{5}}

Using the law of cosines on A E C \triangle{AEC} with included angle θ \theta \implies

E C 2 = 1 + 1 5 4 5 = 2 5 E C = 2 5 \overline{EC}^2 = 1 + \dfrac{1}{5} - \dfrac{4}{5} = \dfrac{2}{5} \implies \overline{EC} = \sqrt{\dfrac{2}{5}} \implies

1 5 = 1 + 2 5 2 2 5 cos ( w ) cos ( w ) = 3 10 sin ( w ) = 1 10 \dfrac{1}{5} = 1 + \dfrac{2}{5} - \dfrac{2\sqrt{2}}{\sqrt{5}}\cos(w) \implies \cos(w) = \dfrac{3}{\sqrt{10}} \implies \sin(w) = \dfrac{1}{\sqrt{10}}

cos ( λ ) = cos ( θ + w ) = 2 5 3 10 1 5 1 10 = 5 10 = 1 2 \implies \cos(\lambda) = \cos(\theta + w) = \dfrac{2}{\sqrt{5}}\dfrac{3}{\sqrt{10}} - \dfrac{1}{\sqrt{5}}\dfrac{1}{\sqrt{10}} = \sqrt{\dfrac{5}{10}} = \dfrac{1}{\sqrt{2}}

λ = 4 5 \implies \lambda = \boxed{45^{\circ}}

David Vreken
Feb 2, 2021

Draw altitude A F AF intersecting B E BE at G G , and let B F = A F = F C = 3 BF = AF = FC = 3 so that F D = 1 FD = 1 and D C = 2 DC = 2 :

Then B F G B E D \triangle BFG \sim \triangle BED by AA similarity, and B E D A F D \triangle BED \sim \triangle AFD by AA similarity, and A F D A E G \triangle AFD \sim \triangle AEG by AA similarity, so that all four triangles B F G B E D A F D A E G \triangle BFG \sim \triangle BED \sim \triangle AFD \sim \triangle AEG .

Since B F = A F BF = AF and B F G A F D \triangle BFG \sim \triangle AFD , B F G A F D \triangle BFG \cong \triangle AFD , which means G F = F D = 1 GF = FD = 1 . Then A G = A F G F = 3 1 = 2 AG = AF - GF = 3 - 1 = 2 .

Let x = G E x = GE . Since A E G A F D \triangle AEG \sim \triangle AFD , A E = E G A F F D = x 3 1 = 3 x AE = EG \cdot \cfrac{AF}{FD} = x \cdot \cfrac{3}{1} = 3x .

Since A E G B E D \triangle AEG \sim \triangle BED , E D = B D G E A G = 4 x 2 = 2 x ED = BD \cdot \cfrac{GE}{AG} = 4 \cdot \cfrac{x}{2} = 2x .

Now copy and rotate A F C \triangle AFC and everything in it 90 ° 90° clockwise about F F :

Then C E E \triangle CEE' is an isosceles right triangle, so C E E = λ = 45 ° \angle CEE' = \lambda = \boxed{45°} .

Nice, purely geometric solution!

Thanos Petropoulos - 4 months, 1 week ago

Let D C = 1 DC=1 . Then B D = 2 BD=2 and A B = A C = 3 2 AB=AC = \dfrac 3{\sqrt 2} . Let B A D = θ \angle BAD = \theta . Then be angle bisector theorem:

A B sin B A D A C sin D A C = B D C D Note that A B = A C sin θ sin ( 9 0 θ ) = 2 1 sin θ cos θ = 2 tan θ = 2 \begin{aligned} \frac {AB \sin \angle BAD}{AC \sin \angle DAC} & = \frac {BD}{CD} & \small \blue {\text{Note that }AB=AC} \\ \frac {\sin \theta}{\sin (90^\circ - \theta)} & = \frac 21 \\ \frac {\sin \theta}{\cos \theta} & = 2 \\ \implies \tan \theta & = 2 \end{aligned}

Then sin θ = 2 5 \sin \theta = \dfrac 2{\sqrt 5} , cos θ = 1 5 \cos \theta = \dfrac 1{\sqrt 5} , and B E = A B sin θ = 6 10 BE = AB \sin \theta = \dfrac 6{\sqrt{10}} . Let E F EF be perpendicular to B C BC . Then

B F = B E cos ( 4 5 ( 9 0 θ ) ) = B E cos ( θ 4 5 ) = 6 10 ( 1 2 1 5 + 1 2 2 5 ) = 1.8 E F = B E sin ( θ 4 5 ) = 6 10 1 10 = 0.6 \begin{aligned} BF & = BE \cdot \cos (45^\circ - (90^\circ - \theta)) = BE \cdot \cos (\theta - 45^\circ) \\ & = \frac 6{\sqrt{10}} \left(\frac 1{\sqrt 2} \cdot \frac 1{\sqrt 5} + \frac 1{\sqrt 2}\cdot \frac 2{\sqrt 5} \right) = 1.8 \\ EF & = BE \cdot \sin (\theta - 45^\circ) = \frac 6{\sqrt{10}} \cdot \frac 1{\sqrt{10}} = 0.6 \end{aligned}

And

λ = F E C F E D tan λ = tan ( F E C F E D ) = tan F E C tan F E D 1 tan F E C tan F E D Note that tan F E C = F C E F = 1.2 0.6 = 2 = 2 1 3 1 + 2 1 3 = 1 and tan F E D = F D E F = 0.2 0.6 = 1 3 λ = 45 \begin{aligned} \lambda & = \angle FEC - \angle FED \\ \tan \lambda & = \tan (\angle FEC - \angle FED) \\ & = \frac {\tan \angle FEC-\tan \angle FED}{1-\tan \angle FEC \cdot \tan \angle FED} & \small \blue{\text{Note that }\tan \angle FEC = \frac {FC}{EF} = \frac {1.2}{0.6}=2} \\ & = \frac {2-\frac 13}{1+2 \cdot \frac 13} = 1 & \small \blue{\text{and }\tan \angle FED = \frac {FD}{EF} = \frac {0.2}{0.6} = \frac 13} \\ \implies \lambda & = \boxed{45}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...